P stet

STET PSD2 API

Documentation Part 1: Framework

Author: Robache Hervé
Date: 2021-04-12

Version: 1.5.1.6 (English)

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

P stet

Table of content

I AN 1 2@ 1 1 I L PP 3
N OO0 01 (=) ¢ ST PU R PTRROPRR 3
O V1131 o o RO PSP VRSP PRPT PPN 3
1.3 LeQal frAMEWOTK ..o bbbttt ettt et b b e b e 4
R N o] = [ot S TSP VRSP PRTPPTPRN 4
2. BUSINESS MODELcoiiiiiiiiiiii ettt e e aaa e 6
2.1, ACEOIS AN ROIES ...ttt ettt b e b e et e b e e s b e s be e s be e nbe e nbeenbe e 6
2.1.1. Payment SErViCe USEI (PSU)coiiiiiiiiiiiiiiiie ettt 6
2.0.2. AP ACIOIS ...oiiiiii ittt 7
2.1.3. Registration AULNOMLES (RA)......ueioi i iiie it e s e e e s e e e e st re e e s antaeeeansreeaesreeeeans 8
2.2, USB CASES ...ttt e 9
2.2.1. PAO USES CASES (NON-API) ...ttt e e s e e e e e e s st e e e s anta e e e annteeasarreeeans 9
2.2.2. Registration USe CaSeS (NON-API)cooiiiiiiie ittt 11
2.2.3. AISP USE CASESoieiiiiiieiiitit ettt ettt ettt s et sh e sh e sa e e et E et nr et 12
2.2.4. CBPIIUSE CASES.....cciutieitiiiitii ettt s ettt ettt et e bt sh e sa e e st et e e r et e sb et e se e e s ne e e be e e nnneennre s 13
2.2.5. PISP USES CASEScoiiiiiiiitiie ittt 14
3. PREREQUISITES AND TECHNICAL DETAILScootiiiiieeeeeeeeeecn e 16
I S od (0] £ R €=To 11 = L1 o o TSP RTRR 16
3.2. Cross-Authentication and Data ENCIYPLIONcoouiiiiiiii e 16
3.3, Customer Authentication APPrOACRESooiii it 17
I TR 0 I o Lo |1 (=Tot Y o]] £ T= o] TR RSP TROPR 17
Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)
1

stet

3.3.2. Decoupled @PPrOBCKeiiii ettt sttt sttt bbb bbb sr e sb e b e she e sreenree s 17
3.3.3. Embedded-1-Factor @pprOaCh...........cccoiiiiiiiiiiie ettt 18
3.3.4. Exemptions to Strong Customer AUthentiCatioN.............cccevieriiiieeiieesee e 18
I T U 14 o T g4 L1 o o TP PR PPV PRPRPRRPRTN 18
3.4.1. Levels of QUINOMZALIONcociiiiiee e 18
3.4.2. TeChNICAI DASIS......ueieiiiiiriiee e 19
3.4.3. AISP authONZAtioN IEVEISeoiiiiiiiiii it sr e e sreesree e 37
3.4.4. CBPIl QUuthOZAtION [EVEISooiiiiitieitie ittt sr e bbb seee s 41
3.4.5. PISP authorization levels and Fraud Management............ccoieeieeiieiee e e 42
3.5, Applicative aUtNENTICALIONoicuiiiiiiiiii bbb et e 49
G TS 1o | F= U =3 o0 0 0] 01U =1 1] o ISP 49
R R £ [N = o) = Y o =T o1 =T RSP 50
G TSR T (o =T o 17 I =T o |1 o SR 50
3.6. Fraud-detection-oriented iNfOrMAatioNccociiiiiini e 50
3.7. Other specific HTTP headers t0 De USEd........cciiiiiiiii e 51
3.8. Specific HTTP return codes and messages to he USed ... 51
3.9. STET PSD2 APl teChNiCal SUMMIAIY.......coiiiiiiiiiiiiie et 52

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

:

P stet

1. Introduction

1.1. Context

The revised Payment Service Directive (PSD2) points out some new roles providing services to

a Payment Service User (PSU):

- Third Party Providers (TPP) which can be subdivided into three categories
o Account Information Service Providers (AISP)
o Payment Initiation Service Providers (PISP)
o Card Based Payment Instrument Issuers (CBPII)

- Account Servicing Payment Service Providers (ASPSP).

Each Member Country has to transpose the PSD2, within its own national law.

The PSD2 is completed by a set of documents provided by the European Banking
Authority (EBA). Among these documents, the Regulatory Technical Standards (RTS) for
Strong Customer Authentication (SCA) details some requirements, for instance on security

principles: traceability, strong customer authentication...

1.2. Mission

STET has been mandated by its shareholders in order to design and provide an open API (Aka
STET PSD2 API) that would specify the different interactions between TPPs and ASPSPs for
carrying out the different use cases of PSD2. This API could be extended to other (non-PSD2)

use cases in the future but this extension is not part of the mandate.

As the RTS for SCA are now finalised, this version of the API and its documentation considers

the new constraints and rules that have been introduced.
This version also includes

- Items that have been identified and studied in common with the BERLIN GROUP, in
a strategy of convergence of the different European API initiatives.

- Evolvements linked to the change requests that have been received after first public
releases of STET PSD2 API.

The STET PSD2 API does not cover:

- Interactions between PSUs and TPP
- Interactions between PSUs and ASPSP

- Registration information management
Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

w

P stet

The technical characteristics of this API are provided within a SWAGGER 2.0 file. The present
document purpose is to provide extra-information on this APl and to give some interaction

samples.

1.3. Legal framework
PSD2:

- http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015L.2366

EBA RTS on SCA and CSC:;

- https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=uriserv:0OJ.L .2018.069.01.0023.01.ENG&toc=0J:L.:2018:069:T
ocC

EBA Opinion on the implementation of the RTS on SCA and CSC:

- https://www.eba.europa.eu/documents/10180/2137845/Opinion+on+the+implementati
on+of+the+RTS+0on+SCA+and+CSC+%28EBA-2018-0Op-04%29.pdf

EIDAS:

- http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=celex%3A32014R0910

1.4. Licence
This specification is published under the following licence

“Creative Commons — Attribution 3.0 France (CC BY 3.0 FR)”

(OMOM

This work has been coordinated by STET with the following contributors:

- BNP Paribas
- Le Groupe BPCE
- Le Groupe Crédit Agricole
- La Banque Fédérative du Crédit Mutuel — CIC
- LaBanque Postale
- La Société Générale
Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

;

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015L2366
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.069.01.0023.01.ENG&toc=OJ:L:2018:069:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.069.01.0023.01.ENG&toc=OJ:L:2018:069:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.069.01.0023.01.ENG&toc=OJ:L:2018:069:TOC
https://www.eba.europa.eu/documents/10180/2137845/Opinion+on+the+implementation+of+the+RTS+on+SCA+and+CSC+%28EBA-2018-Op-04%29.pdf
https://www.eba.europa.eu/documents/10180/2137845/Opinion+on+the+implementation+of+the+RTS+on+SCA+and+CSC+%28EBA-2018-Op-04%29.pdf
http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=celex%3A32014R0910

P stet

- La Caisse des Dépébts et Consignations
- Le Creédit Mutuel - ARKEA

- HSBC France

- L’OCBF

- La Fédération Bancaire Francaise

- LUXHUB

- RAIFFEISEN LU

This release also takes into accounts the work of the Working Group of the French CNPS
(Comité National des Paiements Scripturaux), co-chaired by:

- LaBanque de France
- La Direction Générale du Trésor

Other attendees than banks to this Working Group were:

- L’ACPR (Autorité de Contréle Prudentiel et de Résolution)

- La DINSIC (Direction Interministérielle des Systémes d’Information et de
Communication)

- L’AFEPAME (Association des Etablissements de Paiement et de Monnaie
Electronique)

- CGI Luxembourg S.A.

- MERCATEL

- La FEVAD (Fédération du e-commerce et de la vente a distance)

- L’ASF (Association francaise des Sociétés Financiéres)

- WORLDLINE

- BANKIN

- LINXO

- BUDGET INSIGHT

- LYDIA

- LYRANETWORK

- AMERICAN EXPRESS

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

o1

P stet

2. Business Model

2.1. Actors and Roles
A PSD2 actor is either an entity or a physical person which can endorse one or several roles.

Most of the roles are defined in PSD2. However, some extra-roles have been specified for the

purpose of the STET PSD2 API during the analysis phase of the project.
Within the following diagram:

- Actors have cyan-coloured labels
- Pure PSD2 roles have green-coloured labels
- Specific STET PSD2 API roles have red-coloured labels

Account Information Payment Initiation Card Based Payment Payment Payment Account
Services Provider Services Provider Instrument Issuers Requester Owner

\
Account Servicing
Payment Service
Third Party Provider
Provider
N

APl actor Registratign Authority

Payment
Service User

L)

2.1.1. Payment Service User (PSU)

PSUs are the end-users of the services provided by TPPs and ASPSPs.

They are either physical persons or entities (organisations, companies, administrations...).
They do not interact directly with the STET PSD2 API.

A given PSU endorses at least one of the following roles:

- Payment Account Owner (PAO) for one or several accounts held by one or several
ASPSPs.
- Payment Requester (PR) asking either for a payment or a coverage check.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

P stet

2.1.2. APl actors
2.1.2.1. Account Servicing Payment Service Provider (ASPSP)

These are Payment Service Providers (PSPs) which are in charge of holding payment accounts

for their customers (PSU).

2.1.2.2. Third Party Provider (TPP)
These actors can intermediate between PSUs and ASPSPs, acting on behalf of a PAO or a PR.

On one hand, a given PAO may contract with a TPP in order to use the services provided by
this TPP:

- Account Information Services (AISP role) will allow the PAO to get information,
through a single interface, about all of his/her accounts, whatever the ASPSP holding
this account.

- Card Based Payment Instrument Issuers (CBPII role) that will check the coverage of
a given payment amount by the PSU’s account.

On the other hand, a PR may also contract with a TPP that will provide the following services:

- Payment Initiation Services for requesting a Payment Request approval by the PSU
and requesting the subsequent execution through a Credit Transfer (PISP role).

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

:

stet

2.1.3. Registration Authorities (RA)
RAs are in charge of registering and overviewing the PSD2 actors.

The registration information is the foundation on which each actor can rely in order to know:

- Who is a given actor?
o ldentity
o Contacts (business, legal, operational...)
o Insurance coverage
o Authentication media
= X.509 elDAS certificates (https://eur-lex.europa.eu/eli/req/2014/910/0j)
e QWAC for TLS mutual authentication
e QSEALC for content signature
= Certification chain and services (revocation list, OCSP)
- For which roles this actor has been registered
o AISP
o PISP
o CBPII
o ASPSP
- Technical characteristics
o APIs that are provided
o URLs that are to be used, for test or live processing.

Registration Authorities must keep track of changes for each actor in order to recover the full

history of the actor.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

https://eur-lex.europa.eu/eli/reg/2014/910/oj

P stet

2.2. Use cases

Some of the use cases that are listed below are directly implemented by the STET PSD2 API,
for they rely on interactions between TPPs and ASPSPs.

Other uses cases are tagged as “NON-API” and are only described for global understanding

purpose.

2.2.1. PAO uses cases (NON-API)

Initiates ASPSP
Contract

Initiates TPP
Contract

<<Extends>> <<Extends>>

Grants Account/
Operation Right

Requests Account
Creation

PAO

Revokes TPP
Contract

Revokes ASPSP
Contract

<<Includes>> <<Includes>>

Revokes Account
Operation Right

Requests Account
Closure

<<Includes>> >

USE CASE
DESCRIPTION INTERACTIONS

(PAO)

The user contracts with an ASPSP in order to use its services.
Initiates ASPSP Contract | This use case is likely extended by one or more occurrences of the “Requests | ASPSP

Account Creation” use case

Requests Account The user asks the ASPSP to open a new payment account fERE
Creation Requires a contract between the PAO and the ASPSP

The user asks the ASPSP to close an existing payment account
Requests Account . . . o ASPSP

This use case includes the “revokes Account/Operation Accreditation” use o
Closure TPP (indirectly)

case for all operations on this account and for all granted TPP.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

:

P stet

USE CASE
(PAO)

DESCRIPTION

The user revokes the contract with the ASPSP
This use case includes the “Requests Account Closure” use case for each

INTERACTIONS

Revokes ASPSP . ASPSP
account that is held by the ASPSP. e
Contract . . . o TPP (indirectly)
This use case includes the “Revokes Account/Operation Accreditation” use
case for all operations on each of these accounts and for all granted TPP.
The user contracts with a TPP having AISP and/or CBPII roles in order to use
its service
Initiates TPP Contract . o TPP
This use case is likely extended by one or more occurrences of the “Grants
Account/Operation Accreditation” use case
The user allows the TPP to access a given set of operations on one of his/her
payment accounts.
S—_— Requires a contract between the PAO and the ASPSP, a contract between
rants
) the PAO and the TPP and the registration of this PAO-TPP relationship by the | ASPSP
Account/Operation
o ASPSP to enable the OAUTH2 token management (cf. 83.4.2). TPP
accreditation _ _ o
Requires also that the capture and the execution of the accreditations are
handled by the TPP (the further forwarding of these accreditations is an AISP
use case and so out of scope of this use case: cf. §2.2.3).
The user asks the ASPSP to revoke the TPP access for a given set of
Revokes))
. operations on a given PAO account. ASPSP
Account/Operation)))
o Requires that the capture and the execution of the revocation are handled by TPP
accreditation
the TPP.
The user revokes the contract with the TPP.
This use case includes the “Revokes Account/Operation Accreditation” for all .
Revokes TPP Contract grants given to the TPP, whatever the ASPSP. Since this cannot be —

automated, it is the PAO’s duty to initiate all the relevant revocations with each
ASPSP.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

P stet

2.2.2. Registration use cases (NON-API)

Initiates
Registration

Registers a PSD2
Actor

<<Extends>>

Manages Roles PSD2 <<Extends>>
Actor

|

<<Includes>>

Queries
Registration
Directory

Revokes
Registration

USE CASE
(PSD2 ACTOR)

DESCRIPTION INTERACTIONS

The user asks the RA for registration. RA
Initiates Registration This use case is likely extended by one or more occurrences of the other actors
“Manages Roles” use cases (indirectly)
RA

The user asks the RA to be referenced for a given set of roles.
Manages Roles _ _ other actors
This use case can be replayed in order to reference or dereference any role.

(indirectly)
RA
Revokes registration The user informs the RA that its registration is to be cancelled other actors
(indirectly)
Queries Registration The user queries the RA directory in order to get data on other PSD2 actors: RA
Directory roles, certificates... o.the.r actors
(indirectly)
Registers a PSD2 actor The user registers a given PSD2 actor into its own Directory None

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

:

P stet

2.2.3. AISP use cases

Gets trusted
beneficiaries

Gets account

owners

USE CASE
(AISP)

Gets connected
PSU identity

Gets the PSU

R ontoxt =<includes> | Gets account data

= <7

([Gets account
transactions

Gets account
balances

Gets account
overdraft

Gets account
transaction
history

DESCRIPTION

Send PSU consent

Gets account
transaction
forecast

INTERACTIONS

Gets the PSU The user queries the ASPSP in order to get the payment accounts that are eligible ASPSP
Context for the relevant PSU.
Sends the PSU) _
Having captured the consent choices from the PSU, the user sends them to the
consent to the ASPSP
ASPSP
ASPSP
This use case is abstract. /ts purpose is to stress that the “Gets the PSU Context” is
Gets Account Data . . none
a prerequisite for all other use cases on a given account
Gets Account . . .
G The user queries the ASPSP in order to get the owners on one given account. ASPSP
wners
Get Account The user queries the ASPSP in order to get the overdraft that applies on one given ASPSP
Overdrafts account.
The user queries the ASPSP in order to get the balance on one given account. The
Gets Account .) .
o ASPSP can provide several balance computing’s (Instant Balance, Accounting ASPSP
alance
Balance...), each balance type being specified with an explicit label.
Gets List of This use case is abstract and can be seen as the common interface for the two ASPSP
Transactions following uses-cases.
Gets Account The user queries the ASPSP in order to get all the transactions that have been S
Transaction History | committed to one given PSU account within a given range of value dates.
Gets Account)))
) The user queries the ASPSP in order to get all the transactions that are known by
Transaction)) ASPSP
the ASPSP to be committed to a given PSU account
Forecast
Gets connected The user queries the ASPSP in order to get the identity of the PSU on behalf of G
PSU identity whom the AISP is connected
Gets trusted The user queries the ASPSP in order to get all the beneficiaries that were ASPSP

beneficiaries

registered as “trusted” par the PSU.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

P stet

2.2.4. CBPIl use cases

@j (
CBPII
(g
2

Checks funds
coverage

USE CASE
DESCRIPTION INTERACTIONS

(CBPII)

Checks Funds The user queries the ASPSP in order to check if a given transaction amount can be

_ ASPSP
Coverage covered by one given PSU account

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

s

P stet

2.2.5. PISP uses cases

% PISP

Sends a payment
request

<cixtends>> <cixtends>>
Confirms the Get the payment ctrtendsrs ;"n’]"e}’:[’dr: tEZsl
request request status (] a
status
<<extend:

S \ Merchant
Q #lPayment Requester)

nitiates the Credit

Asks for a transfer
Transfer

Cancels a

car scheduled

Asks for a
cancellation

Ordering Party
(Payment Account Owner)

USE CASE
(3519))

Asks for a transfer

request transfer

DESCRIPTION

Either the Merchant or the Payment Account Owner asks the PISP to initiate a

PSU’s Bank
(ASPSP)

<cEtends>,
Asks for PSU
authentication
ceorends>

INTERACTIONS

PISP
(Non-API) transfer with one or several payment instructions or to set a standing order.
Asks for a Either the Merchant or the Payment Account Owner asks the PISP to cancel:
cancellation (Non- PISP

- all or part of the payment instructions that have been initiated

AED) - or a previously set standing order

USE CASE
DESCRIPTION

(PISP)

INTERACTIONS

The user sends to the ASPSP all the information needed to initiate a Payment.
The payment might have been requested either by the beneficiary (e.g.
Merchant) or by the account owner him/herself.

The payment may include one or several instructions, the maximum number of

i i ifi h ASPSP.
Sends a Payment instructions can be specified by each ASPS

Those instructions might have
Request

- Either a same requested execution date but multiple beneficiaries

- Or a same beneficiary but different requested executions dates,
those being either explicitly specified or scheduled through a
given periodicity (standing orders)

ASPSP

The user sends to the ASPSP a request to cancel, from a previously posted

payment request, one, several or all instructions provided that they have not yet
Sends a cancellation been executed.
request Cancellations can be performed by sending the Payment request with
madifications of the status and reason code at payment level and/or at

instruction level.

ASPSP

The user confirms the Payment Request or the Cancellation Request to the
) ASPSP and might forward, through an EMBEDDED approach, a PAO

Confirms the Request o L
authentication factor so that the ASPSP can complete the PAO authentication

and process the request.

ASPSP

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

14

P stet

USE CASE
(PISP)

Gets the Payment
Request status

DESCRIPTION

The user gets the status of the Payment Request from the ASPSP. This status

embeds:

- Information about the payment request and the execution of the
subsequent Credit Transfers

- Information about the effective booking of the payment
instructions that are about to be executed

- Information about the availability of funds for payment instructions
that are about to be executed but are not effectively booked

- Information about the trust given by the PSU to the beneficiary of
the payment

INTERACTIONS

ASPSP

Forwards the Payment
Request status to the
Creditor (Non-API)

The user informs the PR of the status of the Payment Request

PR (Creditor)

USE CASE

(ASPSP)
Asks for PSU

DESCRIPTION

Provided the Payment Request is valid, the user asks the PAO in order to

INTERACTIONS

authentication (Non- authenticate before execution of the relevant Payment Request or Cancellation | PSU(PAO)
API) Request
Initiates the Credit Provided the PAO has authenticated and the PISP has confirmed the payment Beneficiary’s ASPSP
Transfer (Non-API) request, the ASPSP initiates the relevant Credit Transfer. (Creditor Agent)
Provided the PAO has authenticated and the relevant transfers have not yet
Cancels a scheduled)))
been executed, the ASPSP cancels the execution of the instructions that were None

transfer (Non-API)

specified by the PISP

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

P stet

3. Prerequisites and technical details

3.1. Actors registration

PSD2 actors must be registered by a registration authority. The information that has been

collected must be accessible to other actors in order to provide trust and interoperability.
A non-registered actor cannot interact with another actor.

Each actor must be provided with at least one elDAS certificate (QWAC), for TLS 1.2 purpose,
delivered by a registered Qualified Trust Service Provider (QTSP).

The European Commission list of QTSPs can be retrieved at the following URL.:

https://webgate.ec.europa.eu/tl-browser/

3.2. Cross-Authentication and Data Encryption

The STET PSD2 API relies on TLS 1.2 protocol in order to get cross-authentication between
actors. Moreover, this protocol also ensures data confidentiality during their transport on the
network.

Whenever a TPP connects as a client to an ASPSP API service, it will check the ASPSP server

certificate (QWAC) and present its own elDAS certificate (QWAC) respecting the
ETSI/TS119495 Technical Specification.

The Organisational Identification within the Subject Distinguished Name of the certificate should

actually be regarded as an Authorization Number that will respect the following format rules:

"PSD" as 3-character legal person identity type reference;

e 2-character ISO 3166 [7] country code representing the NCA country;
e hyphen-minus "-" (0x2D (ASCII), U+002D (UTF-8)); and

e 2-8-character NCA identifier (A-Z uppercase only, no separator);

e hyphen-minus "-" (0x2D (ASCII), U+002D (UTF-8)); and

e PSP identifier (authorization number as specified by the NCA).

In case of authentication failure, on one side or the other, the connection must be closed.

No additional encrypting or authenticating feature is required.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

https://webgate.ec.europa.eu/tl-browser/

P stet

3.3. Customer Authentication Approaches

Three different approaches can be used by a TPP to allow the PSU authentication by the
ASPSP. These approaches rely on a PSU identification that must be relevant to the ASPSP
(National identifier or Bank customer identifier).

These approaches are implemented in different ways, depending on the relevant use case:

- either during the authorisation process (cf. 83.4.2), mostly for AISP and CBPII use
cases,

- or during the consent confirmation process, for instance in case of a PISP submitting
a Payment Request (cf. § 3.4.2).

3.3.1. Redirect Approach

Through the Redirect approach, the PSU authentication process is fully processed by the
ASPSP.

In order to allow this, the TPP has to redirect the PSU to the ASPSP authentication service,
meaning the PSU will leave temporarily the TPP interface for authenticating towards the ASPSP

interface.

The TPP might have already captured a PSU identifier that can be handled by the ASPSP for
unambiguously recognizing the PSU. In this case this identifier might be forwarded through the

redirection, when the redirect protocol allows the forwarding of this identifier.

After finalisation of the authentication, the ASPSP redirects the PSU back to the TPP interface.

3.3.2. Decoupled approach

Through the Decoupled approach, the PSU authentication process is fully processed by the
ASPSP.

In order to allow this the TPP has to capture a PSU identifier that can be handled by the ASPSP
for unambiguously recognizing the PSU, and to forward this identifier to the ASPSP.

Based on this identifier, the ASPSP will trigger an authentication through a decoupled device or
application, meaning that the PSU will not leave the TPP interface during the authentication

process.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

7

P stet

3.3.3. Embedded-1-Factor approach

Through this approach, the PSU authentication process involves the TPP that will forward one

authentication factor, this factors being a “Possession” factor, e.g.

o a One-Time Password sent by the ASPSP on a separate device or application
owned by the PSU

o aresponse to a challenge sent by the ASPSP on a separate device or
application owned by the PSU

3.3.4. Exemptions to Strong Customer Authentication

Exemptions to Strong Customer Authentication are specified by the EBA RTS on SCA,

especially for Payment Initiation Services.

In this context, the API allows the PISP to forward to the ASPSP any useful information.
Moreover, the PISP may also hint the ASPSP on whether or not the relevant payment request
could be subject to an exemption.

Eventually, the ASPSP keeps the final decision to apply or not this exemption.
3.4. Authorization

3.4.1. Levels of authorization

The following levels of authorization may be checked and combined in order to compute the
effective rights granted to the TPP:

AUTHORIZATION
LEVEL

DESCRIPTION

Once the TPP has been registered for a given role, it can call any of the PSD2 features provided
by an ASPSP through the STET PSD2 API for this role.

Authorization by TPP-ASPSP The TPP can call any of the additional (non PSD2) features provided by an ASPSP through the
agreement STET PSD2 API, provided there is a bilateral agreement to use these features.

If the PSU has contracted with a TPP, he/she must

Authorization by TPP role

Authorization by TPP-PSU - Give a list of the ASPSPs that he/she allows the TPP to access
Process an authentication against each of those relevant ASPSPs that will further

agreement
allow the TPP to access the PSU data.

The PSU is able to specify his/her PSU context detailing, for each of its relevant accounts:

- If this account will be accessible or not by the TPP
- Which features can be used by the TPP
The PSU can modify at any time his/her PSU context.

Authorization by PSU context

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

18

P stet

3.4.2. Technical basis

The TPP is authorized to access the ASPSP’s API through an access token that can be
retrieved through the OAUTH2 Authorisation Framework (https://tools.ietf.org/html/rfc6749).

Different authorisation grants can be used, depending on the TPP’s role and use case to be

applied.

The TPP may need to handle multiple OAUTH2 tokens provided by a given ASPSP on behalf of
a given PSU. Actually, the request of a new OAUTH2 token must not imply the revocation of a

previous one.

3.4.2.1. TPP Identity matching

The OAUTHZ2 protocol is enforced by checking the identity of the TPP during the OAUTH2
procedures through the TPP’s elIDAS certificate, based on MTLS
(https://datatracker.ietf.org/doc/rfc8705/).

This enforcement is obtained by the mandatory provisioning by the TPP of a [client_id] field
within all OAUTH2 request. This [client_id] must match, directly or not, with the Authorisation
Number located within the TPP’s elDAS certificate and this match must be checked by the
ASPSP for each OAUTH2 request.

Direct matching

The match can be obviously direct when the [client_id] is equal to the Authorisation Number.

In this case the ASPSP’s API MANAGER might be able to check and accept “on the fly” the
OAUTH2 request.

Indirect matching

However, in some cases, especially when the API MANAGER is unable to process an “on the
fly” registration, an OAUTH2 technical setup should occur prior to any OAUTH2 token request.
This setup will result by the provisioning of a [client_id] value by the ASPSP to the TPP.

- The provisioning of multiple [client_id] values that could be used for different use
cases by the TPP is possible through replaying the setup.

- Moreover, the setup allows the exchange of operational data between the TPP and
the ASPSP for further use: logos, phone numbers, email addresses, certificates...

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

19

https://tools.ietf.org/html/rfc6749
https://datatracker.ietf.org/doc/rfc8705/

P stet

Eventually, this setup can be automated.

3.4.2.2. Automated OAUTH2 technical setup

Principles

While most of the APl managers provide an inline setup interface, this setup can also be

automated.

The REC 7591 specifies an interactive dynamic protocol that allows a client to provision some

context metadata and get a [client_id] value. As a complement, REC 7592 specifies how to

retrieve, modify or delete a previously posted context.

If several usage contexts are needed for a given API client, this client will have to reiterate the

complete process to get as many [client_id] values as needed.

Actually, some TPPs might be client of an API on behalf of an agent (Article 4-38 of PSD2).

Each agent should be considered as a specific usage context.

As this protocol is not mandatory, each API implementation will have to specify whether or not it

is implemented.

Context metadata

The relevant metadata items to provide are listed below:

CLIENT METADATA CHANGE
CLIENT METADATA NAME DESCRIPTION REQUIREMENT CONTROLLER REFERENCE
Array of redirection
redirect_uris URIs for use in Mandatory IESG [RFC7591]
redirect-based flows
JSON Web Token
(JWT) that asserts
software_statement metadata values Optional IETF [RFC7591]
about the client
software as a bundle
Mandatory
Requested According to the RFC8705 (cf. §
token_endpoint_auth_method authentication 2.1.1), the value to be used Wi.|| IESG [RFC7591]
- - - method for the token m ! lient auth” IETF [RFC8705]
endpoint. e "tis_client_auth” as soon as
the draft will be promoted as an
RFC.
Mandatory
Indicates the
certificate subject An [RFC4514] string
value representation of the expected
tis_client_auth_subject_dn UEITDEEn T | SYRSss IETF [RFC8705]
server is to expect distinguished name of the
when authenticating certificate, which the OAuth
the client will
respective client. use in mutual-TLS
authentication.
Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)
20

https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7592
http://www.iana.org/go/rfc7591
https://tools.ietf.org/html/draft-ietf-oauth-mtls-13#section-2.1.1

P stet

CLIENT METADATA NAME

CLIENT METADATA

DESCRIPTION

Array of OAuth 2.0

REQUIREMENT
Mandatory

Allowed values are:

CHANGE
CONTROLLER

REFERENCE

grant_types glrlz:\]; %F:;/Sutsh:t the) :"authorizatjon_co de" IESG [RFC7591]
- password
- "client_credentials"
- "refresh_token"
Array of the OAuth Optional
2.0 response types
response_types that the client may “code” is the sole allowed value 12 IRE et
use
Human-readable Mandatory
client_name Eame of the client to Must specify the name of the IESG [RFC7591]
e presented to the
user agent or by default the name of
the TPP.
URL of a web page
client_uri providing information | Optional IESG [RFC7591]
about the client
logo_uri gﬁ;éh]% trrtif:ﬁgﬁs Optional IESG [RFC7591]
Space-separated list
scope of OAuth 2.0 scope Optional IESG [RFC7591]
values
Array of strings
representing ways to | Mandatory
contact people
contacts responsible for this At least one contact must be IESG [RFC7591]
client, typically email provided.
addresses
URL that points to a
human-readable
tos_uri terms of service Optional IESG [RFC7591]
document for the
client
URL that points to a
policy_uri Eglriz?/nd-(r)?:i?::rlﬁ for Optional IESG [RFC7591]
the client
Authorization number
of the TPP according STET
provider_legal_id to ETSI specification Mandatory ;
on elDAS certificates iwle2regsEE)
for PSD2
client_legal_id qu ttrTg r;zgaeflnotnsggmber Ma_nda_ltory ir_1 case of an agent STET
- - below) which is distinct from the TPP (to be registered)
logo base64 encoded Optional STET)
value of the logo (to be registered)
Optional
Client's JSON Web The value of this field MUST be
Key Set [RFC7517] - -
_ document value a J_SON object containing a
jwks , valid JWK Set. These keys can IESG [RFC7591]

which contains the
client's public keys.

be used by higher-level
protocols that use signing or
encryption.

In a similar way to the ETSI specification on the Authorization Number for TPPs, the agent

Authorization Number must respect the following format:

"AGT" as 3-character legal person identity type reference;

- 2-character ISO 3166 country code representing the NCA country;
Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

21

http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591

P stet

hyphen-minus "-" (0x2D (ASCII), U+002D (UTF-8)); and
2-8-character NCA identifier (A-Z uppercase only, no separator);
hyphen-minus "-" (0x2D (ASCII), U+002D (UTF-8)); and

Agent identifier (registration number as specified by the NCA).

Interactions

The TPP submits its context metadata through a

POST /register

In response, it gets this context metadata completed by

the relevant [client_id]

the [registration_client_uri] as an endpoint for configuration of the client

the [registration_access_token] to be used for accessing the configuration of the
client.

its issuing timestamp.

RFC7591 allows the server to update some of the context metadata if needed.

At any time, the TPP can retrieve the context metadata through a

GET /register/{client_id}

Updating the context metadata can be done through a

PUT /register/{client_id}

And deleting the context metadata is possible through a

DELETE /register/{client_id}

3.4.2.3. OAUTH2 Authorization Code Grant

The authorisation process might rely on an OAUTH2 sequence for obtaining an Authorization

Code Grant token (cf. https://tools.ietf.org/html/rfc6749#section-4.1) and implements the
REDIRECT approach.

This kind of token, depending on the ASPSP implementation:

Can be used for all AISP use cases;

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

https://tools.ietf.org/html/rfc6749#section-4.1

P stet

- Can be used for the CBPII use case;
- Can be used for the PISP confirmation use case.

The process can be summarized through the following steps.

° Y

Resource owner Client Authorization server
(PSU) (TPP) (ASPSP)

1) HTTP 302 Location: {authorizationUri}?response_type=code
&client_id={clientid}&redirect_uri={redirectUri}&scope={scope}
&state=(state}

————
(2) GET {authorizationUri}?response_type=codeé&client_id={clientid}&redirect_uri={redirectUri}8scope={scope}&state={state}

(3) Authentication request
- . —
(4) Authentication response
o HOVINRMMEMON TESRONSE -
(5) HTTP 302 Lacation={redirectUri}?state=(state}&code={code}

-———

(6] GET {redirectUri}?state=(state}&code={rode] (7} POST {tokenbrl}
grant_type=authorization_code
&redirect_uri={redirectUri}
d N &client_id=(clientid)
Possible use of OAUTH2 &code={code}
Authorization Code Grant e (8 MITLS based Authentication -
All AISP use cases () HTTP 200
{
CBPIl use cases "access_token" : {accessToken}),
- Payment Coverage Request "taken_type” : "bearer",
“expires_in" : {delay},
PISP use cases "refresh_token" ; {refreshTaken}
- Payment Request Confirmation (recommended) -— Y
N y

At first, the PSU must specify to the TPP, the identity of one of its ASPSPs.
Authorization Request

The TPP initiates the OAUTHZ2 sequence by redirecting the PSU to the relevant ASPSP’s
authorization infrastructure, through the following URL pattern and parameters

Since this is done by a redirection of the PSU, the eIDAS of the TPP cannot be presented at this
stage.

Notice: The RFC 6749 does not specify the Authorization Code Grant to support the forwarding
of the Resource Owner (PSU) user name or language preferences. However, some OpenlD
Connect features might be used for these purposes even though the OpenID Connect
specification is not fully applied (cf. § 3.4.2.4).

| GET /authorize?response_type=code&client_id={clientld}&redirect_uri={redirectUri}&scope={scope}[&state={state}] |

TYPE AND

CONSTRAINS

String[10]
response_type [1..1] Expected type of token Must be valued with
“code”

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

23

P stet

TYPE AND
b2 DISUA CONSTRAINS
String[36] must be equal
or linked to the
Organizationldentifier
client_id [1..2] | TPP identification part of the Distinguished
Name of the eIDAS
certificate, according to
ETSI specification
redirect_uri [0..1] Call-back URL of the TPP String[140]
Specifies the generic accreditations that both the
PSU and the TPP agreed on:
- ForAlsp String[140]
® el , , Space delimited roles
scope [0..1] o extended_transaction_history | it
- for CBPII Ma'ndatory
o cbpii
- for PISP
o pisp
Internal state that can be used by the TPP for String[1024]
state [0..1]
context management. Recommended
The ASPSP

- ldentifies and authenticates the PSU

- Computes the relevant TPP checks (roles, validity, non-revocation...)

- Checks the [redirect_uri] against the ones that might have been declared during the
automated OAUTH2 technical setup (cf. § 3.4.2.2). The provided [redirect_uri] must
exactly match one those that have been registered.

Authorization Response

Afterwards, the ASPSP redirects the PSU to the TPP, using the previously given call-back URL

(redirect_uri) and the following parameters:

TYPE AND
NAME DATA CONSTRAINS
code [1.1] Short-time code to use in order to get the String[36]
access token
. . String[1024]
state [0..1] Internal state if provided by the TPP Recommended

The recommended lifetime of the authorization code as specified by the RFC 6749 is 10

minutes but it is up to the authorization server to set its own lifetime value.

Access Token Request

In order to get the access token, the TPP is now able to call, through a POST request, the

ASPSP’s authorization infrastructure with the following parameters.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

24

stet

POST /token HTTP/1.1
Host: server.example.com

grant_type=authorization_code
&code={code}
&redirect_uri={redirectUrl}
&client_id={clientld}

TYPE AND
N2 SIS CONSTRAINS
String[36]
grant_type [1..1] Requested authorization type Must be valued with
“authorization_code”
Short-time code previously provided by the :
code [1..2] ASPSP String[36]
String[140]
Must be equal to the one
redirect_uri [0..1] | Call-back URL of the TPP provided during the
authorization code
request
String[36] must be equal
or linked to the
Organizationldentifier part
client_id [1..2] | TPP identification. of the Distinguished
Name of the eIDAS
certificate, according to
ETSI specification
- The ASPSP
o ldentifies and authenticates the TPP through the presented elDAS certificate
(QWAC)
o Checks the direct or indirect matching between the Authorization Number
within the elDAS certificate and the [client_id] value.
o Computes the relevant TPP checks (roles, validity, non-revocation...)

Access Token Response

- The ASPSP answers through a HTTP200 (OK) response that embeds the following

data.
TYPE AND
NAME DATA CONSTRAINS
access_token [1.1] ?g(l:aess token provided by the ASPSP to the String[140]
q 5 0 String[10]

token_type [1.1] T’\)A/%ec f?)f the provided access token (‘Bearer” or Must be valued with

“Bearer”
expires in [0..1] Token lifetime, in seconds. The token can be Numeric

pires_ - used several times as far as it is not expired.
Refresh token that can be used for a future .

refresh_token [0..1] token renewal request. String[140]

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

P stet

3.4.2.4. OpenlD Connect extension to the OAUTH2 Authorization Code Grant

As an optional feature, an authorization server may implement the « OpenlID Connect Core

1.0 » specification on top of the OAUTH2 “Authorization Code” flow.

The OpenlD Connect protocol allows the API client (TPP) to get from the API server (ASPSP)

an IdToken that will certify the identity of the PSU, once this PSU has been authenticated by the

ASPSP.

Authentication request

The Open Id Connect Authentication Request relies on the OAUTHZ2 “Authorization Code”
Authorization Request with some additional parameters, marked as bold in the following

diagram)requirement.

©). L

Resource owner Client Authorization server
(PSU) (TPP) (ASPSP)
1) HTTP 302 Location: {authorizationUri} ?response_type=code
&client_id={clientid}&redirect_uri={redirectUri}&scope={scope}&state={state}

&nonce={nonce}&max-age={maxAge}&ui_locales={locales}&id_token_hint={idToken}&login_hint={login}

(2) GET {authorizationUri}?response_type=codeé&client_id={clientid}&redirect_uri={redirectUri}&scope={scope}&state={state}
B&nonce={noncel&max-age={maxAge}&ui_locales={locales}&id_token_hint={idToken}&login_hint={login}

(3) Authentication request

- . —
(4) Authentication response
. it -
e mm—mmm e VI HTTF 302 Location={redirectUri}?state-{statelfeadesteode) | _______________
(6) GET {redirectUri}?state=(state}&code={code} (7) POST {tokenUrl}
grant_type=authorization_code
&redirect_uri={redirectUri}
&client_id={clientid}
Bcode={code}
Possible use of Openld P, (8) MTLS based Authentication . _ . _ .. _ . _.__ .. .
Connect Grant (o) HrTP 200
All AISP use cases
"access_token” ; {accessToken},
CBPII use cases "token_type" : "bearer”,
- Payment Coverage Request “expires_in" : {delay},
“refresh_token™ : {refreshToken},
"id_token" : {idToken}
I y S:
TYPE AND
NAME DATA
CONSTRAINS
String[10]
response_type [1..1] Expected type of token Must be valued with
“ »
code

String[36] must be equal
or linked to the
Organizationldentifier
client_id [1..1] TPP identification part of the Distinguished
Name of the eIDAS
certificate, according to
ETSI specification

redirect_uri [0..1] Call-back URL of the TPP String[140]

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

26

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

P stet

TYPE AND
b2 DISUA CONSTRAINS
String[140]
Space delimited roles
list.
Specifies the generic accreditations that both the
PSU and the TPP agreed on: additional scopes are
- For AISP required
o aisp "
o extended_transaction_histo - openiafor
Scope 0] - for CBPII - - i specifying the use
o cbpii. of OpenID
- Inany case Connect
o openid - offline_access to
o offline access allow the retrieval
- of arefresh token
within the OpenID
context.
state [0..1] Internal state that can be used by the TPP for String[1024]
context management.
Association of a client session with an Id .
nonce 1o token used to mitigate replay attacks St/
max-age [0..1] Maximum authentication age (in seconds) String[15]
String [140]
End-User's preferred
languages and scripts
ui locales [1.1] End-User's preferred languages and scripts for the user interface,
- " for the user interface. represented as a
space-separated list
[REC 5646]
Required by the API
id_token_hint [0.1] ;s; known IdToken for the end-user (PSU), if String [2048]
Hint to the Authorization Server about the
login_hint [0..1] | login identifier the End-User might use to log String[36]

in (if necessary).

The [id_token_hint] parameter is quite useful to ease a PSU authentication request renewal by

forwarding his/her already known identification. For a first authentication request the [login_hint]

parameter can be used by the TPP to forward the PSU identification, as known by the ASPSP.

As for the OpenID Connect Authentication Request is based on the OAUTH2 Authorization

Request, the latest is enhanced in the following way:

GET /authorize?
response_type=code
&client_id=s6BhdRkqt3
&redirect_uri=https%3A%2F%2Fclient.example.org%2Fch
&scope=openid%20%offline_access%20%aisp20aisp
&nonce=n-0S6_WzA2M;j
&state=af0Oifjsldkj

HTTP/1.1

Host: server.example.com

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

27

https://tools.ietf.org/html/rfc5646

P stet

Enhanced OAUTH2 Authorization Code Grant

Even though the OpenID Connect cannot be fully implemented, it may be worth using some of
its specific parameters in order to enrich an OAUTH2 authorization request if the server allows
it. The benefit of having the PSU identification, through the [login_hint] parameter, and language
preferences, through the [ui_locales] parameter, should be seen as a real advantage.

Authentication Response

Case of a successful processing of the request, the server will return an authorization code
through the redirection of the PSU towards the TPP.

HTTP/1.1 302 Found
Location: https://client.example.org/cb?
code=SpIxlIOBeZQQYbYS6WxSbIA
&state=afOifjsldkj

Token request

The TPP requests the exchange of the authorization code against an OAUTH2 token.

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded
grant_type=authorization_code&code=SpIxIOBeZQQYbYS6WxSbIA
&redirect_uri=https%3A%2F%2Fclient.example.org%2Fch

NB: The « Authorization » header is useless since authentication is provided through MTLS,
based on the TPP elDAS certificate (https://datatracker.ietf.org/doc/rfc8705/).

Token response

The Authorization server answers with:

- An OAUTH2 access token
- An OAUTH?2 refresh token
- An IdToken

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

28

https://client.example.org/cb
https://datatracker.ietf.org/doc/rfc8705/

P stet

{
"access_token": "SIAV32hkKG",

"token_type": "Bearer",

"refresh_token": "8xLOxBtZp8",

"expires_in": 3600,

"id_token": "eyJhbGciOiJSUzI1NilsimtpZCl6ljFIOWdkazcifQ.ewoglmlzc
yl61CJodHRwWOIi8vc2VydmVyLmV4YW1wbGUuY29tliwKICIzdWIiOiAiMjQ4Mjg5
NzYxMDAXxIiwKICIhdWQiOiAiczZCaGRSa3FOMylsCiAibm9uY2UiOiAibiOwUzZ
fV3pBMk1gliwKICJleHAiIOiAxMzExMjgxOTcwLAogImlhdCI6IDEzZMTEyODASNz
AKfQ.ggW8hZ1EuVLuxNuullKX_V8a_ OMXzROEHROR6jgdqrOOF4daGU96Sr_P6q
Jp6lcmD3HP990bi1PRs-cwh3LO-pl146wal8lhehcwlL7F09)dijmBgkvPeB2T9CJ
NgeGpe-gccMgavfKikM8FcGvnzZUN4_KSP0aAp1t0J1zZwgjxqGByKHiOtX7Tpd
QyHES5IcMIiKPXfEIQILVgOpc_E2DzL7emopWoaoZTF_mO0_NOYzFC6g6EJbOEoR0S
K5hoDalrcvRYLSrQAZZKflyuVCyixEoVIGFNQC3_osjzw2PAithfubEEBLUVVk4
XUVrWOLrLIOnx7RkKUSNXNHg-rvKMzqg"

IdToken structure
The structure of the IdToken is a Json Web Token (JWT).

In the previous example, the following data is included:

{
alg: "RS256",
kid: "1e9gdk7"

|3

—~

iss: "http://server.example.com",
sub: "248289761001",

aud: "s6BhdRkqt3",

nonce: "n-0S6_WzA2M;j",

exp: 1311281970,

iat: 1311280970

|2

[signature]

The possible data items are described in the following table:

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

@)or |

29

http://server.example.com/

P stet

FIELD REQUIREMENT DESCRIPTION

iss Mandatory Token provider identifier

sub Mandatory Token subject identifier

aud Mandatory Token recipient [client_id]
Mandatory retrieval of the [nonce]

nonce Conditional parameter if present in the initial
Authentication Request

exp Mandatory IdToken expiration date [RFC3339]

iat Mandatory IdToken creation date [RFC3339]
End-user (PSU) authentication date and

auth_time | Conditional time [—RFC3$39] when.the [rT_1a.x._age]
parameter is present in the initial
Authentication Request

3.4.25. OAUTH2 Resource Owner Password Grant

The registration process relies on an OAUTH2 sequence for obtaining a Resource Owner
Password Grant token (cf. https://tools.ietf.org/html/rfc6749#section-4.3) and implements the
EMBEDDED approach.

This kind of token, depending on the ASPSP implementation:

- Can be used for all AISP use cases ;
- Can be used for the CBPII use case.
In order to enforce the flow and respect the two-factor authentication constraint, the “password”

to be used must not be a static password but the concatenation of:

- apossession factor obtained through an ad-hoc device provided to the PSU by the
ASPSP,
- and a knowledge factor (e.g. PIN)

However, it is important to notice that OAuth 2.0 Security Best Current Practice will likely

deprecate this flow in the near future.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

30

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc6749#section-4.3

P stet

The process can be summarized through the following steps.

@&

Resource owner
(PSU)

(1) Provides the TPP with the Bank, the Username and "password" to be used

Possible use of OAUTH2

Resource Owner Password Grant

).

Client
(TPP)

(2) POST {tokenUrl}
grant_type=password
&client_id={clientid}
&username={userName}
Epassword={password}
&scope=[scope}

Authorization server|
(ASPSP)

All AISP use cases
CBPIl use cases
- Payment Coverage Request

(3) MTLS based Authentication

- 2PN BESRG AMNENLEATED
(4) HTTP 200
{
"access_token" : {accessToken),
“token_type” : "bearer”,
"expires_in" : {delay},
"refresh_token"” : {refreshToken}
- y

———————————— -

At first, the PSU must specify, to the TPP, the identity of one of his’lher ASPSPs and provides

him with

o His/her identifier against the ASPSP services
o A “password” that is the result of a Strong Customer Authentication applied to

the PSU by the ASPSP.

Access Token Request

The TPP initiates the OAUTHZ2 sequence by sending the following request directly to the

ASPSP’s Authorisation Service.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

31

P stet

POST /token HTTP/1.1
Host: server.example.com

grant_type=password
&username={userName}
&password={password}
&client_id={clientld}
&scope={scope}

TYPE AND
CONSTRAINS
String[10]

grant_type [1..1] type of requested grant Must be valued with
“password”

username [1.1] PSU identification String[36]

String[20]

Result of the
password [1..1] PSU “password” concatenation of a
“knowledge factor” and
a “possession” factor
String[36] must be equal
or linked to the
Organizationldentifier
client_id [1..2] | TPP identification part of the Distinguished
Name of the eIDAS
certificate, according to
ETSI specification

NAME DATA

Specifies the generic accreditations that both the
PSU and the TPP agreed on:

- For AISP String[140]
scope [0..1] o aisp Space delimited roles
o extended_transaction_history | list.
- for CBPII
o cbpii

The ASPSP

- Identifies and authenticates the TPP through the presented eIDAS certificate (QWAC)
- Checks the direct or indirect matching between the Authorization Number within the
elDAS certificate and the [client_id] value.
- Computes the relevant TPP checks (roles, validity, non-revocation...)
The ASPSP checks the identifier of the PSU and parse the “password” in order to retrieve and

checks the “Knowledge” factor and the “Possession” factor, thus processing the SCA.

Access Token Response

- In case of successful SCA, the ASPSP answers through a HTTP200 (OK) response
that embeds the following data.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

2

P stet

TYPE AND
b2 SIS CONSTRAINS
access._token [1.1] ?g(lzjess token provided by the ASPSP to the String[140]
g @ 0 String[10]

token_type [1.1] T'\%g\% o)f the provided access token (‘Bearer” or Must be valued with

“Bearer”

. . Token lifetime, in seconds. The token can be .
Expires_tn [0-1] used several times as far as it is not expired. Numeric
Refresh token that can be used for a future .

refresh_token [0..1] token renewal request. String[140]

3.4.2.6. OAUTH2 Client Credentials Flow

The registration of the TPP by the ASPSP relies on an OAUTH2 sequence for obtaining a Client
Credential grant token (cf. https://tools.ietf.org/html/rfc6749¢#section-4.4).

This kind of token, depending on the ASPSP implementation:

- Can be used for the CBPII use case ;
- Can be used for the PISP confirmation use case (basic REDIRECT Approach);
- Must be used for all others PISP use cases.

This procedure can be summarized through the following steps.

© y

Resource owner Client Authorization server
(PSU) (TPP) (1) POST POST {tokenUrl} (ASPSP)
grant_type=client_credentials
4 R &client_id={clientld}
. Bscope=[scope}
Possible use of OAUTH2
Client Credentials Grant P 2) MTLS based Authentication . ___ . _..___ . -
CBPIl use cases (3) HTTP 200
- Payment Coverage Request (otherwise Authorization Code Grant) hcms;okm”.{ammﬁken}‘
PISP use cases “token_type":"bearer”,

. "expires_in":{delay}
- Payment Request Initiation

- Payment Request Retrieval AT T TS T TS TT T T T T T T T T T T T T T eee
- Payment Request Modification
- Payment Request Confirmation (not recommended)

Access Token Request

The TPP sends directly, through a POST request, its access token request to the ASPSP

authorization infrastructure with the following URL pattern and parameters

POST /token
Host: authorization-server.com
grant_type=client_credentials
&scope={scope}
&client_id={clientld}

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

33

https://tools.ietf.org/html/rfc6749#section-4.4

P stet

NAME

grant_type

[1..1]

DATA

Requested authorization type

TYPE AND
CONSTRAINS
String[36]

Must be valued with
“client_credentials”

scope

[0..1]

Specifies the generic accreditations that both the
PSU and the TPP agreed on: PISP.

String[140]

Space delimited roles
list.

Default value is “pisp”

client_id

[1..1]

TPP identification

String[36] must be equal
or linked to the
Organizationldentifier
part of the Distinguished
Name of the eIDAS
certificate, according to
ETSI specification

The ASPSP

- Identifies and authenticates the TPP through the presented elDAS certificate (QWAC)

- Checks the matching, direct or indirect, between the Authorization Number within the
elDAS certificate and the [client_id] value.

- Computes the relevant TPP checks (roles, validity, non-revocation...)

Access Token Response

- The ASPSP answers through a HTTP200 (OK) response that embeds the following

data.
TYPE AND
NAME DATA CONSTRAINS
access_token [1.1] ?gc;ess token provided by the ASPSP to the String[140]
. " g String[10]

token_type [1.1] T'\%pAeC o)f the provided access token (“Bearer” or Must be valued with

“Bearer”

. . Token lifetime, in seconds. The token can be .

expires_in [0..1] Numeric

used several times as far as it is not expired.

3.4.2.7. Use of the Access Token

The access token must be used within each request within the “Authorization” header, prefixed

by the token type “Bearer”.

The [client_id] that is linked to the access token must directly or indirectly match with the
Authorisation Number that is located within the TPP’s eIDAS certificate (QWAC).

If the access token is expired, the request will be rejected with HTTP401 with an error equal to

“‘invalid_token” and the request can be replayed once the access token has been refreshed.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

34

P stet

If the access token scope cannot cover the request (case of extended transaction history
request for instance):

- The request will be rejected with HTTP403 with an error equal to “insufficient_scope”
- The refresh token will be revoked so the request could be replayed once a new token,
having the right scope, would have been requested and provided.

3.4.2.8. Refreshing the Access Token

Refreshing the access token is only possible when the access token was granted through an

OAUTH2 “Autorization Code”, OpenlID Connect or “Resource Owner Password”’ Grants.

According to the RFC 6749 (cf. https://tools.ietf.org/html/rfc6749#section-6), the Refresh Token

can be used by the TPP in order to get a refreshed Access Token by the following request.

POST /token HTTP/1.1
Host: server.example.com

grant_type=refresh_token
&client_id={clientld}
&refresh_token=tGzv3JOKFOXG5Qx2TIKWIA
&scope={scope}

TYPE AND
LIS DA CONSTRAINS
Must be valued with
grant_type [1..1] “refresh token”
refresh_token [1..2] | Value of the provided refresh token

String[36] must be equal
or linked to the
Organizationldentifier
client_id [1..1] TPP identification part of the Distinguished
Name of the eIDAS
certificate, according to
ETSI specification

String[140]

Specifies the generic accreditations that both the
PSU and the TPP agreed on: “aisp” or “cbpii”.

scope [0t “extended_transaction_history” is not allowed in Esp;ace ezl e
this case.]
- The ASPSP
o ldentifies and authenticates the TPP through the presented elDAS certificate
(QWACQ)

o Checks the direct or indirect matching between the Authorization Number
within the elDAS certificate and the [client_id] value.
- The ASPSP answers through a HTTP200 (OK) response that embeds the following
data.

TYPE AND

CONSTRAINS
String[140]

Access token provided by the ASPSP to the

access_token [1.1] TPP

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

35

https://tools.ietf.org/html/rfc6749#section-6

P stet

TYPE AND
NS Rl CONSTRAINS
g 5 0 String[10]

token_type [1.1] TI\%%% o)f the provided access token (‘Bearer” or Must be valued with

“Bearer”
expires in [0.1] Token lifetime, in seconds. The token can be Numeric

pires_ - used several times as far as it is not expired.

refresh_token [0..1] i?:;i?]ht;?(iin that can be replace the previous String[140]

If the refresh token has been revoked, the request will be rejected with HTTP400 and an error

equal to “invalid grant”.

3.4.2.9. Refresh Token Revocation
The refresh token provided to an AISP is de facto revoked by the ASPSP

- After timeout of the by-law specified delay between two SCAs.

- After timeout of the ASPSP specified delay based on internal rules if any.

- After reject of a request for insufficient scope in order to allow the AISP to request
another token with the desired scope.

- On request of a PSU wanting to revoke the TPP access on his/her account data.

The TPP is also able to ask for the revocation of the refresh token, according to RFC 7009 (cf.
https://tools.ietf.org/html/rfc7009) through the following request.

POST /revoke HTTP/1.1
Host: server.example.com

token=45ghiukldjahdnhzdauz
&token_type_hint=refresh_token
&client_id={clientld}

TYPE AND
NS RS CONSTRAINS
token [1.1] | Token to be revoked by the ASPSP. String[140]
. Information about the type of token to be Must be valued with
o.5am yae A | [kl revoked “refresh_token”

String[36] must be equal
or linked to the
Organizationldentifier
client_id [1..1] | TPP identification part of the Distinguished
Name of the eIDAS
certificate, according to
ETSI specification

- The ASPSP
o ldentifies and authenticates the TPP through the presented elDAS certificate
(QWAC)
Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

36

https://tools.ietf.org/html/rfc7009

P stet

o Checks the direct or indirect matching of the [client_id] value with the
Authorisation Number that is located within the TPP’s elDAS certificate
(QWAQC).

o Revokes the refresh token

3.4.2.10. Oauth?2 for native apps

The RFC 8252 (https://tools.ietf.org/html/rfc8252) extends the use of the OAuth Authorization

request to applications that are installed on a given device (e.g. a smartphone).
Based on this RFC, one might consider having a straight through authorization process by using

- Universal Link (I0S based devices)
- App Link (Android based devices)

However, the API specification does not mandate this mechanism.

3) The TPP app issues the authorization

1) The user is using the TPP app on his/her device. request, which opens the ASPSP app.

He/she wants to give access to his/her data and

indicates his/her bank within the TPP 3 : -
indicates his/her bank within the ﬂp:\ 5) The ASPSP app issues the authorization

response which triggers the return to the TPP
app.

wr

oo
2) The TPP app retrieves the URI from
the ASPSP’s OAUTH2 server and builds

the authorization request with
- the appropriate client_id

Prerequisites:

- the requested scope
- its callback URI

6) The TPP server retrieves the

The ASPSP app has registered on the device
the URI of the OAUTH2 server as an
[Universal Link]/[App Link].

The TPP app has registered on the same

4) the ASPSP authenticates the
user and constructs the
authorization response with

- the authorization code

authorization code. device the callback URI as an [Universal

Link]/[App Link].

v A,
S NS
) 7) The TPP server exchanges the authorization o
code for an access token and a possible refresh
S P S
token.
TPP’s server ASPSP’s authorization server

3.4.3. AISP authorization levels

Since a TPP is acting on behalf of a PSU being a PAO, the PSD2 use cases that are linked with
AISP role require the following authorization levels:

- Authorization by Role
- Authorization by TPP-PSU agreement
- Authorization by PSU context

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

37

https://tools.ietf.org/html/rfc8252

P stet

3.4.3.1. List of the relevant ASPSPs

When contracting with a TPP, the PSU will provide a list of the ASPSPs that it allows the TPP to

access. This list may not be exhaustive and so may not include some of the PSU’s ASPSPs.

3.4.3.2. Registration of the TPP-PSU agreement by each ASPSP

This registration is due to enable the further access of the TPP to the PSU’s data that is hosted
by a given ASPSP by providing the TPP with an OAUTH2 access token.

The access token can be retrieved by one of the following Grants:

- OAUTH2 Authorization Code grant (REDIRECT approach)
o This grant can be enhanced with the following additional parameters borrowed
from OpenID Connect:
= [login_hint]
= [ui_locales]
- OpenlD Connect Grant (REDIRECT approach)
- OAUTH2 Resource Owner Password (EMBEDDED approach)

Each ASPSP will have to document its own choice on this topic.

3.4.3.3. AISP OAUTH2 Scopes

It is requested that AISP, CBPII or PISP roles will not be mixed within a single scope definition
OAUTH2 access token request.

The OAUTH2 scope requested by an AISP can be one of the following values:

- “aisp”

- “aisp extended_transaction_history”
The first scope value allows the AISP accessing all accessible accounts and data allowed by
the PSU until expiration of the by-law specified delay between two SCAs. However, the value
does not allow requesting an extended transaction history, i.e. history including transactions
older than 90 days.

The second scope value allows the AISP accessing all accessible accounts and data allowed
by the PSU until expiration of the by-law specified delay between two SCAs. It also allows

reguesting an extended transaction history.

However, this “aisp extended_transaction_history” scope will be restricted to “aisp” by the
ASPSP during the first token refresh. Thus:

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

P stet

- The AISP will be able to ask for an extended transaction history with the very first
access token retrieved after a token request. So, in this case a single SCA will be
required and used to get the token and to ask for an extended transaction history.

- Any further extended transaction history request will be considered as out of scope
(cf. 83.4.2)

¥ y|

Resource owner Client Authorization server
(PSU) (TPP) (ASPSP)

OAUTH2 Authorization Code Grant (REDIRECT)
or
Openld Connect Grant (REDIRECT)
or
OAUTH2 Resource Owner Password Grant (EMBEDDED)

GET /accounts
PUT /consents
GET /end-user-identity

GET /trusted-beneficiaries

Possible uses of the first Access Token < GET /account/{hcniRscdl/belonces

| GET /accounts/{AcntRscld}/transactions

(even for transactions older than 90 days if extended_transaction_history in scop
GET /accounts/{AcntRscld}/owners

GET /accounts/{AcntRscld}/overdrafts

yvYyvyZE YYYYY

[OAUTH2 AISP use cases]

[OAUTH2 Token Refresh

(GET /accounts
PUT /consents
GET /end-user-identity
GET /trusted-beneficiaries
GET /accounts/{AcntRscld}/balances

Yvvyyvy

Possible uses of refreshed Access Tokens <
) GET /accounts/{AcntRscld}/transactions

(excepting transactions older than 90 days)
GET /faccounts/{AcntRscid}/owners
GET /accounts/{AcntRscld}/overdrafts

Yvy

3.4.3.4. PSU detailed consent

The PSU detailed consent will specify which account or functionality will be accessible to the

AISP. It can be seen as a collection of individual accreditations.

Accreditations

\J/ -accredit -accreditor \l/
‘ AccountinformationServiceProvider ‘ Accreditation ‘ PaymentServiceUser ‘ ‘ icing| i i ‘

\ \ \ \ o \

‘ ThirdPartyProvider ‘ ‘ TrustedBeneficiariesListAccess ‘ ‘ AccountAccreditation ‘ holds

ThirdPartyProviderldentifier ‘ ‘ ‘ ‘ ‘

allowsJ LappliesOn

AccountOperationEnumeration CustomerBankAccount
Balances Account tO| i LELE 2 isLinked IBAN
Transactions Resourceld istinke Currency
AmountCoverage Name
CashAccountType

This collection is specific to a given PSU, a given TPP and a given ASPSP.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

P stet

Each single accreditation relies on a specific account that is owned by the PSU and is held by
the ASPSP. It specifies which pieces of data (transactions, balances) the TPP is allowed to

carry out on this account.
The PSU manages this context with the AISP which is responsible of:

— The capture of the PSU choices:
e The PSU specifies to the AISP which account and feature should be
accessed or not.

e The execution of the PSU choices:

e The AISP has the responsibility to respect the PSU choices and not to
access any feature that it has not been granted for.

At any time, the PSU can edit his/her consent choices but this can only be done with the AISP.

Furthermore, the PSU consent may or may not be forwarded by the AISP to the ASPSP,
according to one of the two following consent management models.

Full-AISP model (Al)
In this model, the ASPSP does not require to be informed of the details of the PSU consent.

Whatever the AISP request, the ASPSP will respond, being unable to check the compliance of

the request against the PSU choices.

Actually, when getting the PSU context from the ASPSP (through the call [get /accounts]), the

AISP will get all relevant HAL links and resource identifiers for each eligible account.

These HAL links will help the AISP to request the needed features on those accounts: balances

and/or transactions.

Mixed model (A2)

In this model, the ASPSP does require to be informed of the details of the PSU consent.
Therefore, the ASPSP has implemented an ad-hoc API entry-point that can be called by the
AISP in order to forward the PSU choices.

Actually, when getting the PSU context from the ASPSP (through the call [get /accounts]), the
AISP will get all eligible accounts but HAL links and resource identifiers will be provided only for

the accounts on which consent was given by the PSU.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

w0

P stet

These HAL links will help the AISP to request the needed features on those accounts: balances
and/or transactions.

Model choice

It is the charge of the ASPSP to implement or not the mixed model (A2). However, if this model
has been implemented by the ASPSP, it is the charge of the AISP to forward the details of the
PSU consent to the ASPSP whenever the PSU gives or edits this consent.

Once the details of the PSU consent has been received and saved by the ASPSP, the AISP,
when getting the PSU context from the ASPSP (through the call [get /accounts]), will only get

HAL links for authorized accounts and features.

3.4.4. CBPIl authorization levels

Since a CBPIl is acting on behalf of a PSU being a PAO, the PSD2 use cases that are linked
with AISP and CBPII roles require the following authorization levels:

- Authorization by Role
- Authorization by TPP-PSU agreement
- Authorization by PSU context

However, in some cases, the CBPII might have been previously enrolled by the PSU to the
relevant ASPSP (cf. §3.4.4.3).

3.4.4.1. Listof therelevant ASPSPs

When contracting with a TPP, the PSU will provide a list of the ASPSPs that it allows the TPP to

access. This list may not be exhaustive and so may not include some of the PSU’s ASPSPs.

3.4.4.2. Registration of the TPP-PSU agreement by each ASPSP

This registration is due to enable the further access of the TPP to the PSU’s data that is hosted
by a given ASPSP by providing the TPP with an OAUTH2 access token.

The access token can be retrieved:

- Either through an OAUTH2 Authorization Code flow (REDIRECT approach)
- Oran OAUTH2 Resource Owner Password (EMBEDDED approach)

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

.

P stet

3.4.4.3. Pre-enrolled CBPIl authorization level

When the PSU has previously enrolled the CBPII to his/her relevant ASPSP, the latest may
prefer to apply a simpler authorization scheme.

The access token can then be retrieved through an OAUTH2 Client Credentials flow, aiming
that PSU authentication is useless since the PSU consent was already captured.

3.4.4.4. CBPIl scope

It is requested that AISP and CBPII roles will not be mixed within a single scope definition
OAUTH2 access token request.

The OAUTH2 scope requested by a CBPII can only be “cbpii”.

@ y

Resource owner Client Authorization server
(PSU) (TPP) (ASPSP)

OAUTH2 Authorization Code Grant (REDIRECT)
Openld Connectoérant (REDIRECT)
OAUTH2 Resource Owner I:arssword Grant (EMBEDDED)
QrOAUTHZ Client Credentials Grant (No PSU authentication)

POST /funds-confirmations

[OAUTHZ CBPII use cases]

3.4.5. PISP authorization levels and Fraud Management
3.4.5.1. Posting and getting a Payment/Transfer Request

For posting or getting a Payment Request on behalf of a Merchant, or a Transfer Request on
behalf of an Ordering Party, the PISP can use an access token that can be retrieved from the
ASPSP through an OAUTH2 Client Credentials flow.

3.4.5.2. Cancellation of a Payment Request

In case the PISP has to cancel a payment request, the Access token to be used can be
retrieved from the ASPSP through an OAUTH2 Client Credentials flow as well.

However, the ASPSP may require an authentication of the PSU that can be performed through
REDIRECT (simple, cf. infra), DECOUPLED or EMBEDDED-1-FACTOR approaches.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

-

P stet

In this perspective, the PISP will

- suggest the authentication approaches it supports
- and provide the call-back URLs to use for the REDIRECT approach.
o Atleast one call-back URL must be provided
o A second one may be provided that will be used in case of exception during
the process.

The ASPSP will then answer

- either with the decision of not processing the PSU authentication,
- or with the chosen authentication approach completed with the redirection URL to use
in case of REDIRECT approach.

3.4.5.3. Confirmation of a Payment Request

For confirmation of a Payment Request, the law requires the PSU to be authenticated by the
ASPSP.

This authentication shall be strong, unless exemption cases and can be performed through
REDIRECT (OAuth2 enforced, cf. infra), DECOUPLED or EMBEDDED-1-FACTOR

approaches.

The PISP will suggest the authentication approaches it supports. The ASPSP will then answer
with the chosen authentication approach completed with the redirection URL to use in case of
REDIRECT approach.

Once the PSU has confirmed the Payment Request through authentication, the PISP must itself
confirm the payment-request after having checked, for instance, the absence of potential

security flaw.
The posting of the PISP confirmation needs an access token as well.

- For DECOUPLED or EMBEDDED-1-FACTOR approaches, this access token might
be the one that was previously retrieved through the Client Credentials flow and used
for posting the payment request.

- For REDIRECT approach, the use of another access token, provided through an
OAUTH2 Authorization Code flow that will embed the PSU authentication is
mandatory.

3.4.5.4. Simple REDIRECT Approach

This approach can only be used for a Payment Request cancellation.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

P stet

The PSU authentication is then processed through a simple redirection of the PSU to the
ASPSP authentication server by using the URL that was initially provided by the ASPSP.

The ASPSP authenticates the PSU and then redirects the latest by using one of the call-back
URLSs that were provided by the PISP.

3.4.5.5. OAUTH2 Enforced REDIRECT Approach
This approach is mandatory for a Payment Request confirmation in REDIRECT approach.

An Authorization Code token will be used for the confirmation. The PSU authentication is
processed through the Authorization Code flow with the ASPSP authentication server.

Purpose and risk analysis
The payment initiation may indeed face some security issues in REDIRECT approach.

A first attack (session fixation) might happen, based on the fact that a given PSU will forward
the redirection request to another PSU who can be in a situation to authenticate and pay the

purchase made by the first PSU.

Moreover, even if the first attack is mitigated, the attacker might also try to simulate the
redirection (fake redirect) to the TPP in order to induce the confirmation of the payment request
to the ASPSP.

Session fixation protection

In order to avoid the session fixation attack, the PISP must ensure there is no “PSU-switch”

during redirection. This can be done by managing a nonce that

- will be stored in the PSU user agent session before the redirection to the ASPSP and
- will be retrieved from the PSU user agent after the redirection.

In case the retrieval failed, the chances are good there was such an attack. The PISP should

then cancel the payment request for fraud reason.

Otherwise, in case of successful nonce retrieval, the PISP can confirm the payment request to

the ASPSP who is then able to trigger the relevant Credit Transfers.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

24

P stet

Fake redirect protection

In order to post the confirmation, the PISP has to request an Authorization Code token from the
ASPSP.

In response to the payment request, The ASPSP has provided the PISP with the URI of the
Authorisation server. Some OAuth2 parameters must have been pre-valued:

- [response_type] valued with “code”
- [scope] valued with “pisp”
- [context] valued with a hint to the payment-request

The PISP will complete this URL with its own OAuth2 parameters
- [client_id]

- [state] if needed
- [redirect_uri] as call-back URL.

The OAuth2 Authorization Code grant can then complete (cf. §3.4.2.3).

After the retrieval of the Authorization Code through the redirection of the PSU back to the
PISP, the latest must then ensure, by the nonce check mechanism, there was no “PSU-switch”

during the redirection, as previously explained.
The PISP can then exchange the Authorization Code against the Access token.

- the lifetime of the access token is specified by the Authorization Server in order to
limit the usability period.
- no refresh token has to be provided.

The confirmation is then posted, using this Access token.
In case of face redirect attack, the Access token could not have been retrieved by the PISP.

Even in confirmation attempt, the ASPSP can detect the absence of the token and will then
reject the payment request for FRAUD reason.

Otherwise, the confirmation sent by the PISP will lead to the normal triggering of the relevant

Credit Transfers.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

.

P stet

Wb)

Resource owner Client Authorization server
(PSU) (TPP) (ASPSP)

(1) Accepts payment and gives account data

(2) Create state nonce and stores it in the PSU's session

-
OAUTH2 Client Credentials Grant
(3) POST https://rest.aspsp/payment-requests
H {PaymentRequestData)
OAUTH2 Enforced Redirect authorizationeBearer (ClientCredentialsToken)
acceptedAuthenticationApproach=["REDIRECT"...]
PISP use case P
(4) Create payment context
(5) HTTP 201 e

Location={AspspApiUri)/payment-requests/{PmtRscld}
appliedAuthenticationApproach=REDIRECT
[A =, hUri}/authorize?

Z ~ pproval=(Aspsp ponse_typ
\l\// \\/_/‘/ a &scope=pisp&context={paymentContext)

TPP detects potential = = =
changs of PSU et OAUTH2 Authorization Code Grant (Without Refresh Token)|

7 (6) POST https://rest.aspsp/payment-requests/{PmtRscld}/confirmation
—

authorization=Bearer {AuthorizationCodeAccessToken}

ASPSP detects p

—
g

g ake redirection from attacker e —— (7) check authorization value D
(8) HTTP 200 s
’/ PaymentRequest data and status

(9) trigger payment execution
e
(10) GET https://rest.aspsp/payment-requests/{PmtRscld}
authorization=Bearer {ClientCredentialsToken}
(11) HTTP 200
Paymentrequest data and status

>

3.45.6. OAUTH2 DECOUPLED Approach

In this approach, the Client Credential token can be used for all PISP use cases:

- Posting a payment request

- Getting the previously posted payment-request
- Modifying for cancellation the payment request
- Confirming the payment request

The PSU authentication is processed through a decoupled channel initiated by the ASPSP.
After PSU authentication, the PISP is informed by a direct call by the ASPSP. The PISP can

then confirm the payment request that will lead to the normal triggering of the relevant Credit

Transfers.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

P stet
@l y | i

Resource owner Client Authorization server
(PSU) (TPP) (ASPSP)

{1) Accepts payment and gives account data

(2) Create state nonce and stores it in the PSU's session >

[OAUTH2 Client Credentials Grant

(3) POST https://rest.aspsp/payment-requests

{PaymentRequestData}
authorization=Bearer {ClientCredentialsToken}
OAUTH2 Deco up led acceptedAuthenticationApproach=["DECOUPLED"... |
successfulReportUri=[TppReportUrl}
PISP use case
(4] Create payment context

(5) HTTP 201
Location={AspspApiUri i/ payment-requests/{PmtRscld}
PLED

(6) Contact PSUthrough a decoupled device

e e (7) Dynamic linking and authentication request _
o (8} Authentication response and confirmation -
(9) GET Location={TppRedirecctUrl}

(10) POST https://rest.aspsp/payment-requests/{PmtRscld}/confirmation
authorization=Bearer {ClientCredentialsToken}

(11) HTTP 200
PaymentRequest data and status

{12} trigger payment ExenutiaD

(13) GET https://rest.aspsp/payment-requests/{PmtRscld}/confirmation
authorization=Bearer {ClientCredentialsToken}

(14) HTTP 200
Paymentrequest data and status

3.4.5.7. OAUTH2 EMBEDDED-1-FACTOR Approach
In this approach, the Client Credential token can be used for all PISP use cases:

- Posting a payment request
- Getting the previously posted payment-request
- Modifying for cancellation the payment request
- Confirming the payment request
The PSU authentication is triggered through the sending of a One-Time-Password (OTP) or a

challenge by the ASPSP to the PSU via a dedicated channel.

The PSU forwards the OTP or the response to the challenge to the PISP. The later can then
include this piece of data within the confirmation to be addressed to the ASPSP who is then

able to trigger the relevant Credit Transfers.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

a7

P stet
@

Resource owner Client Authorization server
(PSU) (TPP) (ASPSP)

{1) Accepts payment and gives account data

(2) Create state nonce and stores it in the PSU's session >

[OAUTH2 Client Credentials Grant

(3) POST https:/frest.aspsp/payment-requests

OAUTHZ {PaymentRequestData}
autherization=Bearer {ClientCredentialsToken}
EMBEDDED-1-FACTOR acceptedAuthenticationApproach=["EMBEDDED".... |
PISP use case (4) Create payment context >
(5) HTTP 201

Location={AspspApiUri i/ payment-requests/{PmtRscld}
DED

(6) Send an OTP PSU through a decoupled device (posession factor)

> (7) Complete authentication (knowledge or inherence factar)

(8) forward the OTP

(9) POST https://rest.aspsp/payment-requests/{PmtRscld}/confirmation
authorization=Bearer {ClientCredentialsToken}
psuAuthenticationfactor={otp}

(10) HTTP 200
PaymentRequest data and status

-————— e e
{11) trigger payment ExenutiaD
(12) GET https://rest.aspsp/payment-requests/{PmtRscld}/confirmation
authorization=Bearer {ClientCredentialsToken}
(13) HTTP 200
Paymentrequest data and status
-——— e e

3.4.5.8. Recapitulative Table

EMBEDDED-
ENFORCED REDIRECT DECOUPLED
1-FACTOR
) The nonce must be computed by the PISP and stored within the PSU user-
Nonce mechanism
.) agent as far as the PISP accepts Simple REDIRECT or Enforced REDIRECT
protection applied by PISP) .
approaches when posting or cancelling a payment request.
Successful and To be used
. To be used by the ASPSP through)
Unsuccessful Report Uri o directly by the Useless
. PSU redirection
provided by PISP ASPSP
o) Must include
Accepted Authentication Must include
Must include “REDIRECT” “EMBEDDED-1-
Approach set by PISP “DECOUPLED”
FACTOR”
Applied Authentication “‘EMBEDDED-1-
“REDIRECT” “DECOUPLED”
Approach set by ASPSP FACTOR”
Use of OAUTH2 Client))
. In any case except for confirmation In any case
Credentials token
Use of OAUTH2) .
L Mandatory for confirmation Not used
Authorization Code token
consentApproval Set with the ASPSP authorization
Not used
set by ASPSP server
Challenge set by ASPSP Not used
psuAuthenticationFactor Valued with the
Not used OTP or response
set by PISP
to a challenge

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

stet

3.5. Applicative authentication

Each request sent by the TPP has to be signed using http-signature mechanism which is
specified by the following IETF draft-paper:

e https://datatracker.ietf.org/doc/draft-cavage-http-signatures/

ASPSP might also apply http-signature to their responses.

3.5.1. Signature computation
The way it should be implemented is the following

- Computing a SHA256 digest of the HTTP body and adding this digest as an extra
HTTP header.
- Using a specific Qualified Certificate (QSealC), respecting the ETSI/TS119495
Technical Specification, in order to apply an RSA-SHA256 signature on
o all the following headers that are present within the HTTP request sent by the
TPP, including the previously computed digest
= Date (if available)
= Content-Type (when there is a payload)
= Content-Length (when there is a payload)
= X-Request-ld
= All available "PSU"-prefixed Headers (cf. § 3.6)
= the specific “(request-target)” pseudo-header which is specified by the
IETF draft-paper

o all the following headers that are present within the HTTP response given by
the ASPSP, including the previously computed digest
= Date (if available)
= Content-Type (when there is a payload)
= Content-Length (if available)
= X-Request-ld

- Adding this signature within an extra HTTP header embedding
o The key identifier which must specify the way to get the relevant qualified
certificate (see below)
o The algorithm that has been used
The list of headers that have been signed
The signature itself.

Since version #11 of the draft, two new pseudo-headers have been introduced in order to

strengthen the signature: (created) and (expires). However, work is still going on this subject

and the use of these two fields is not yet recommended.
Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

49

https://datatracker.ietf.org/doc/draft-cavage-http-signatures/

stet

3.5.2. Value of key identifier

It is requested that this identifier is valued with:

- Either the keyld that has been assigned by the authorization server during the
OAUTH2 technical setup (cf. § 3.4.2.2).
- Either a URL aiming to provide the relevant Qualified Certificate.

o In order to assure an easy discrimination of the certificate among others, it is
requested that the last part of the URL to the certificate be suffixed by an
underscore followed by the SHA-256 fingerprint of the certificate.

= E.g.:
https://path.to/myQsealCertificate_714f8154ec259ac40b8a9786¢c9908
488b2582b68b17e865fede4636d726b709f
o This URL could have been provided during the OAUTH2 technical setup
within the “5xu” field of the JKS provided by the TPP (cf. RFC7517).

3.5.3. Exception handling

If the ASPSP notes that the signature is either absent or invalid, it shall reject the request with
HTTP400.

EXTRA HTTP HEADER [DJAY AN COMMENT
Digest Digest of the body

The keyld must specify the way
to get the relevant qualified
certificate.

http-signature of the request (cf It is requested that this identifier
Signature https://datatracker.ietf.org/doc/draft-cavage- | 'S 3" NP or Nttps URL aiming

hitp-sianatures, to provide the relevant
sl sl) Qualified Certificate.

The certificate format must be
PEM

3.6. Fraud-detection-oriented information

The following extra HTTP-headers must be used within the HTTP request sent by the TPP,
provided the relevant pieces of data are available within the connection between the PSU and
the TPP. This forwarding allows the ASPSP to integrate this information into its own fraud

detection process.

Moreover, these headers can be considered as proof of the PSU being connected.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

s

https://datatracker.ietf.org/doc/draft-cavage-http-signatures/
https://datatracker.ietf.org/doc/draft-cavage-http-signatures/

P stet

EXTRA HTTP HEADER

PSU-IP-Address

DATA

IP Address of the PSU terminal when
connecting to the TPP

COMMENT

In regards with GDPR rules,
this must be subject to PSU’s
consent

PSU-IP-Port

IP Port of the PSU terminal when connecting
to the TPP

PSU-HTTP-Method

HTTP Method used for the most relevant
PSU’s terminal request to the TTP

PSU-Date

Timestamp of the most relevant PSU’s
terminal request to the TTP

PSU-User-Agent

“User-Agent” header field sent by the PSU
terminal when connecting to the TPP

PSU-Referer

“Referer” header field sent by the PSU
terminal when connecting to the TPP

PSU-Accept

“Accept” header field sent by the PSU
terminal when connecting to the TPP

PSU-Accept-Charset

“Accept-Charset” header field sent by the
PSU terminal when connecting to the TPP

PSU-Accept-Encoding

“Accept-Encoding” header field sent by the
PSU terminal when connecting to the TPP

PSU-Accept-Language

“Accept-Language” header field sent by the
PSU terminal when connecting to the TPP

PSU-GEO-Location

The forwarded Geo Location of the
corresponding HTTP request between PSU
and TPP if available.

In regards with GDPR rules,
this must be subject to PSU’s
consent

PSU-Device-ID

UUID (Universally Unique Identifier) for a
device, which is used by the PSU, if
available.

UUID identifies either a device or a device
dependant application installation.

In case of installation identification this ID
need to be unaltered until removal from
device.

In regards with GDPR rules,
this must be subject to PSU’s
consent

3.7. Other specific HTTP headers to be used

EXTRA HTTP HEADER

COMMENT

X-Request-ID

Correlation header to be set in a request and
retrieved in the relevant response.

3.8. Specific HTTP return codes and messages to be used

HTTP
MESSAGE CODE SIGNIFIANCE

Format of certain request fields are not matching the XS2A requirements. An explicit
FORMAT_ERROR 400 path to the corresponding field might be added in the return message.
RESOURCE_UNKNOWN 404 If resourceld in path
PERIOD _INVALID 400 Requested time period out of bound.
ACCESS _EXCEEDED 429 The access on the account has been exceeding the consented multiplicity per day.
REQUESTED_FORMATS 206 The requested formats in the Accept header entry are not matching the formats

INVALID

offered by the ASPSP.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

51

P stet

3.9. STET PSD2 API technical summary

TOPIC

Access network

CHOICE

Internet

COMMENT

Network protocol

HTTP 1.1 (Minimum)

Data encryption

Cross-authentication

TLS1.2

Could be enforced through STS and/or PFS

Authorization protocol

OAUTH2

In respect of RFC 6749, 7009
One of the following token modes

- Authorization Code Grant (AISP, CBPII)
- Resource Owner Password (AISP, CBPII)
- Client credential (PISP, CBPII)

Based on MTLS, the identity of the TPP is provided by its elDAS
certificate during OAUTH2 procedures.
https://datatracker.ietf.org/doc/rfc8705/

Applicative protocol

REST

In respect of the Richardson Maturity Model, on level three in order
to provide HYPERMEDIA links.

Applicative authentication

http-signature

Notice this is actually an |IETF draft, waiting for approval and so
subject to some modifications.
https://datatracker.ietf.org/doc/draft-cavage-http-signatures/

PSU Strong Customer

Authentication approaches

REDIRECT, DECOUPLED,
EMBEDDED-1-FACTOR

Data format

JSON/UTF8

With use of ISO20022 based data structures

Technical documentation

SWAGGER 2.0

Date/Time format must respect ISO8601 and RFC3339 in
accordance with OpenApi specifications.

The creator of a Date/Time shall choose

- Any time-zone format although UTC format is
recommended.

- Any second fraction format, including no second
fraction.

A simple date can be specified as an UTC date/time with a time
part equal to “00:00:00Z”.

The recipient of a Date/Time must be able to interpret its value as
far as it is compliant with 1ISO8601 and RFC3339.

Published by STET under Creative Commons - Attribution 3.0 France (CC BY 3.0 FR)

https://datatracker.ietf.org/doc/draft-ietf-oauth-mtls/
https://datatracker.ietf.org/doc/rfc8705/
https://datatracker.ietf.org/doc/draft-cavage-http-signatures/

