

STET PSD2 API

Documentation Part 1: Framework

Author: Robache Hervé

Date: 2020-10-30

Version: 1.5.0.43 (English)

Table of content

1. INTRODUCTION .. 3

1.1. Context .. 3

1.2. Mission .. 3

1.3. Legal framework ... 4

1.4. Licence .. 4

2. BUSINESS MODEL ... 6

2.1. Actors and Roles .. 6

2.1.1. Payment Service User (PSU) .. 6

2.1.2. API actors ... 7

2.1.3. Registration Authorities (RA) .. 8

2.2. Use cases .. 9

2.2.1. PAO uses cases (NON-API) .. 9

2.2.2. Registration use cases (NON-API) .. 11

2.2.3. AISP use cases .. 12

2.2.4. CBPII use cases ... 13

2.2.5. PISP uses cases .. 14

3. PREREQUISITES AND TECHNICAL DETAILS ... 16

3.1. Actors registration ... 16

3.2. Cross-Authentication and Data Encryption .. 16

3.3. Customer Authentication Approaches .. 17

3.3.1. Redirect Approach .. 17

3.3.2. Decoupled approach .. 17

3.3.3. Embedded-1-Factor approach ... 18

3.3.4. Exemptions to Strong Customer Authentication .. 18

3.4. Authorization .. 18

3.4.1. Levels of authorization ... 18

3.4.2. Technical basis ... 19

3.4.3. AISP authorization levels ... 37

3.4.4. CBPII authorization levels .. 41

3.4.5. PISP authorization levels and Fraud Management ... 42

3.5. Applicative authentication .. 49

3.5.1. Signature computation ... 49

3.5.2. Value of key identifier ... 50

3.5.3. Exception handling ... 50

3.6. Fraud detection oriented information .. 50

3.7. Other specific HTTP headers to be used... 51

3.8. Specific HTTP return codes and messages to be used .. 51

3.9. STET PSD2 API technical summary... 52

1. Introduction

1.1. Context

The revised Payment Service Directive (PSD2) points out some new roles providing services to

a Payment Service User (PSU):

- Third Party Providers (TPP) which can be subdivided into three categories

o Account Information Service Providers (AISP)

o Payment Initiation Service Providers (PISP)

o Card Based Payment Instrument Issuers (CBPII)

- Account Servicing Payment Service Providers (ASPSP).

Each Member Country has to transpose the PSD2, within its own national law.

The PSD2 is completed by a set of documents provided by the European Banking

Authority (EBA). Among these documents, the Regulatory Technical Standards (RTS) for

Strong Customer Authentication (SCA) details some requirements, for instance on security

principles: traceability, strong customer authentication…

1.2. Mission

STET has been mandated by its shareholders in order to design and provide an open API (Aka

STET PSD2 API) that would specify the different interactions between TPPs and ASPSPs for

carrying out the different use cases of PSD2. This API could be extended to other (non-PSD2)

use cases in the future but this extension is not part of the mandate.

As the RTS for SCA are now finalised, this version of the API and its documentation considers

the new constraints and rules that have been introduced.

This version also includes

- Items that have been identified and studied in common with the BERLIN GROUP, in

a strategy of convergence of the different European API initiatives.

- Evolvements linked to the change requests that have been received after first public

releases of STET PSD2 API.

The STET PSD2 API does not cover:

- Interactions between PSUs and TPP

- Interactions between PSUs and ASPSP

- Registration information management

The technical characteristics of this API are provided within a SWAGGER 2.0 file. The present

document purpose is to provide extra-information on this API and to give some interaction

samples.

1.3. Legal framework

PSD2:

- http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015L2366

EBA RTS on SCA and CSC:

- https://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=uriserv:OJ.L_.2018.069.01.0023.01.ENG&toc=OJ:L:2018:069:T

OC

EBA Opinion on the implementation of the RTS on SCA and CSC:

- https://www.eba.europa.eu/documents/10180/2137845/Opinion+on+the+implementati

on+of+the+RTS+on+SCA+and+CSC+%28EBA-2018-Op-04%29.pdf

EIDAS:

- http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=celex%3A32014R0910

1.4. Licence

This specification is published under the following licence

“Creative Commons – Attribution 3.0 France (CC BY 3.0 FR)”

This work has been coordinated by STET with the following contributors:

- BNP Paribas

- Le Groupe BPCE

- Le Groupe Crédit Agricole

- La Banque Fédérative du Crédit Mutuel – CIC

- La Banque Postale

- La Société Générale

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015L2366
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.069.01.0023.01.ENG&toc=OJ:L:2018:069:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.069.01.0023.01.ENG&toc=OJ:L:2018:069:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.069.01.0023.01.ENG&toc=OJ:L:2018:069:TOC
https://www.eba.europa.eu/documents/10180/2137845/Opinion+on+the+implementation+of+the+RTS+on+SCA+and+CSC+%28EBA-2018-Op-04%29.pdf
https://www.eba.europa.eu/documents/10180/2137845/Opinion+on+the+implementation+of+the+RTS+on+SCA+and+CSC+%28EBA-2018-Op-04%29.pdf
http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=celex%3A32014R0910

- La Caisse des Dépôts et Consignations

- Le Crédit Mutuel - ARKEA

- HSBC France

- L’OCBF

- La Fédération Bancaire Française

- LUXHUB

- RAIFFEISEN LU

This release also takes into accounts the work of the Working Group of the French CNPS

(Comité National des Paiements Scripturaux), co-chaired by:

- La Banque de France

- La Direction Générale du Trésor

Other attendees than banks to this Working Group were:

- L’ACPR (Autorité de Contrôle Prudentiel et de Résolution)

- La DINSIC (Direction Interministérielle des Systèmes d’Information et de

Communication)

- L’AFEPAME (Association des Établissements de Paiement et de Monnaie

Électronique)

- CGI Luxembourg S.A.

- MERCATEL

- La FEVAD (Fédération du e-commerce et de la vente à distance)

- L’ASF (Association française des Sociétés Financières)

- WORLDLINE

- BANKIN’

- LINXO

- BUDGET INSIGHT

- LYDIA

- LYRA NETWORK

- AMERICAN EXPRESS

2. Business Model

2.1. Actors and Roles

A PSD2 actor is either an entity or a physical person which can endorse one or several roles.

Most of the roles are defined in PSD2. However, some extra-roles have been specified for the

purpose of the STET PSD2 API during the analysis phase of the project.

Within the following diagram:

- Actors have cyan-coloured labels

- Pure PSD2 roles have green-coloured labels

- Specific STET PSD2 API roles have red-coloured labels

2.1.1. Payment Service User (PSU)

PSUs are the end-users of the services provided by TPPs and ASPSPs.

They are either physical persons or entities (organisations, companies, administrations…).

They do not interact directly with the STET PSD2 API.

A given PSU endorses at least one of the following roles:

- Payment Account Owner (PAO) for one or several accounts held by one or several

ASPSPs.

- Payment Requester (PR) asking either for a payment or a coverage check.

Payment
Service User

Payment
Requester

Payment Account
Owner

Account Servicing

Payment Service

Provider

Registration Authority

Account Information

Services Provider

Card Based Payment

Instrument Issuers

Payment Initiation

Services Provider

Third Party
Provider

API actor

2.1.2. API actors

2.1.2.1. Account Servicing Payment Service Provider (ASPSP)

These are Payment Service Providers (PSPs) which are in charge of holding payment accounts

for their customers (PSU).

2.1.2.2. Third Party Provider (TPP)

These actors can intermediate between PSUs and ASPSPs, acting on behalf of a PAO or a PR.

On one hand, a given PAO may contract with a TPP in order to use the services provided by

this TPP:

- Account Information Services (AISP role) will allow the PAO to get information,

through a single interface, about all of his/her accounts, whatever the ASPSP holding

this account.

- Card Based Payment Instrument Issuers (CBPII role) that will check the coverage of

a given payment amount by the PSU’s account.

On the other hand, a PR may also contract with a TPP that will provide the following services:

- Payment Initiation Services for requesting a Payment Request approval by the PSU

and requesting the subsequent execution through a Credit Transfer (PISP role).

2.1.3. Registration Authorities (RA)

RAs are in charge of registering and overviewing the PSD2 actors.

The registration information is the foundation on which each actor can rely in order to know:

- Who is a given actor?

o Identity

o Contacts (business, legal, operational…)

o Insurance coverage

o Authentication media

▪ X.509 eIDAS certificates (https://eur-lex.europa.eu/eli/reg/2014/910/oj)

• QWAC for TLS mutual authentication

• QSEALC for content signature

▪ Certification chain and services (revocation list, OCSP)

- For which roles this actor has been registered

o AISP

o PISP

o CBPII

o ASPSP

- Technical characteristics

o APIs that are provided

o URLs that are to be used, for test or live processing.

Registration Authorities must keep track of changes for each actor in order to recover the full

history of the actor.

https://eur-lex.europa.eu/eli/reg/2014/910/oj

2.2. Use cases

Some of the use cases that are listed below are directly implemented by the STET PSD2 API,

for they rely on interactions between TPPs and ASPSPs.

Other uses cases are tagged as “NON-API” and are only described for global understanding

purpose.

2.2.1. PAO uses cases (NON-API)

USE CASE

(PAO)
DESCRIPTION INTERACTIONS

Initiates ASPSP Contract

The user contracts with an ASPSP in order to use its services.

This use case is likely extended by one or more occurrences of the “Requests

Account Creation” use case

ASPSP

Requests Account

Creation

The user asks the ASPSP to open a new payment account

Requires a contract between the PAO and the ASPSP
ASPSP

Requests Account

Closure

The user asks the ASPSP to close an existing payment account

This use case includes the “revokes Account/Operation Accreditation” use

case for all operations on this account and for all granted TPP.

ASPSP

TPP (indirectly)

PAO

Initiates ASPSP

Contract

Requests Account

Creation

Requests Account

Closure

Revokes ASPSP

Contract

<<Extends>>

<<Includes>>

Initiates TPP

Contract

Grants Account/

Operation Right

<<Extends>>

Revokes Account/

Operation Right

Revokes TPP

Contract

<<Includes>>

<<Includes>>

USE CASE

(PAO)
DESCRIPTION INTERACTIONS

Revokes ASPSP

Contract

The user revokes the contract with the ASPSP

This use case includes the “Requests Account Closure” use case for each

account that is held by the ASPSP.

This use case includes the “Revokes Account/Operation Accreditation” use

case for all operations on each of these accounts and for all granted TPP.

ASPSP

TPP (indirectly)

Initiates TPP Contract

The user contracts with a TPP having AISP and/or CBPII roles in order to use

its service

This use case is likely extended by one or more occurrences of the “Grants

Account/Operation Accreditation” use case

TPP

Grants

Account/Operation

accreditation

The user allows the TPP to access a given set of operations on one of his/her

payment accounts.

Requires a contract between the PAO and the ASPSP, a contract between

the PAO and the TPP and the registration of this PAO-TPP relationship by the

ASPSP to enable the OAUTH2 token management (cf. §3.4.2).

Requires also that the capture and the execution of the accreditations are

handled by the TPP (the further forwarding of these accreditations is an AISP

use case and so out of scope of this use case: cf. §2.2.3).

ASPSP

TPP

Revokes

Account/Operation

accreditation

The user asks the ASPSP to revoke the TPP access for a given set of

operations on a given PAO account.

Requires that the capture and the execution of the revocation are handled by

the TPP.

ASPSP

TPP

Revokes TPP Contract

The user revokes the contract with the TPP.

This use case includes the “Revokes Account/Operation Accreditation” for all

grants given to the TPP, whatever the ASPSP. Since this cannot be

automated, it is the PAO’s duty to initiate all the relevant revocations with each

ASPSP.

TPP

ASPSP

2.2.2. Registration use cases (NON-API)

USE CASE

(PSD2 ACTOR)
DESCRIPTION INTERACTIONS

Initiates Registration

The user asks the RA for registration.

This use case is likely extended by one or more occurrences of the

“Manages Roles” use cases

RA

other actors

(indirectly)

Manages Roles
The user asks the RA to be referenced for a given set of roles.

This use case can be replayed in order to reference or dereference any role.

RA

other actors

(indirectly)

Revokes registration The user informs the RA that its registration is to be cancelled

RA

other actors

(indirectly)

Queries Registration

Directory

The user queries the RA directory in order to get data on other PSD2 actors:

roles, certificates…

RA

other actors

(indirectly)

Registers a PSD2 actor The user registers a given PSD2 actor into its own Directory None

PSD2
Actor

Revokes

Registration

Manages Roles

Initiates

Registration

Queries

Registration

Directory

Registers a PSD2

Actor

<<Extends>>

<<Extends>>

<<Includes>>

2.2.3. AISP use cases

USE CASE

(AISP)
DESCRIPTION INTERACTIONS

Gets the PSU

Context

The user queries the ASPSP in order to get the payment accounts that are eligible

for the relevant PSU.
ASPSP

Sends the PSU

consent to the

ASPSP

Having captured the consent choices from the PSU, the user sends them to the

ASPSP
ASPSP

Gets Account Data
This use case is abstract. Its purpose is to stress that the “Gets the PSU Context” is

a prerequisite for all other use cases on a given account
none

Gets Account

Owners
The user queries the ASPSP in order to get the owners on one given account. ASPSP

Get Account

Overdrafts

The user queries the ASPSP in order to get the overdraft that applies on one given

account.
ASPSP

Gets Account

Balance

The user queries the ASPSP in order to get the balance on one given account. The

ASPSP can provide several balance computing’s (Instant Balance, Accounting

Balance…), each balance type being specified with an explicit label.

ASPSP

Gets List of

Transactions

This use case is abstract and can be seen as the common interface for the two

following uses-cases.
ASPSP

Gets Account

Transaction History

The user queries the ASPSP in order to get all the transactions that have been

committed to one given PSU account within a given range of value dates.
ASPSP

Gets Account

Transaction

Forecast

The user queries the ASPSP in order to get all the transactions that are known by

the ASPSP to be committed to a given PSU account
ASPSP

Gets connected

PSU identity

The user queries the ASPSP in order to get the identity of the PSU on behalf of

whom the AISP is connected
ASPSP

Gets trusted

beneficiaries

The user queries the ASPSP in order to get all the beneficiaries that were

registered as “trusted” par the PSU.
ASPSP

2.2.4. CBPII use cases

USE CASE

(CBPII)
DESCRIPTION INTERACTIONS

Checks Funds

Coverage

The user queries the ASPSP in order to check if a given transaction amount can be

covered by one given PSU account
ASPSP

CBPII

Checks funds

coverage

2.2.5. PISP uses cases

USE CASE

(PSU)
DESCRIPTION INTERACTIONS

Asks for a transfer

(Non-API)

Either the Merchant or the Payment Account Owner asks the PISP to initiate a

transfer with one or several payment instructions or to set a standing order.
PISP

Asks for a

cancellation (Non-

API)

Either the Merchant or the Payment Account Owner asks the PISP to cancel:

- all or part of the payment instructions that have been initiated

- or a previously set standing order

PISP

USE CASE

(PISP)
DESCRIPTION INTERACTIONS

Sends a Payment

Request

The user sends to the ASPSP all the information needed to initiate a Payment.

The payment might have been requested either by the beneficiary (e.g.

Merchant) or by the account owner him/herself.

The payment may include one or several instructions, the maximum number of

instructions can be specified by each ASPSP.

Those instructions might have

- Either a same requested execution date but multiple beneficiaries

- Or a same beneficiary but different requested executions dates,

those being either explicitly specified or scheduled through a

given periodicity (standing orders)

ASPSP

Sends a cancellation

request

The user sends to the ASPSP a request to cancel, from a previously posted

payment request, one, several or all instructions provided that they have not yet

been executed.

Cancellations can be performed by sending the Payment request with

modifications of the status and reason code at payment level and/or at

instruction level.

ASPSP

Confirms the Request

The user confirms the Payment Request or the Cancellation Request to the

ASPSP and might forward, through an EMBEDDED approach, a PAO

authentication factor so that the ASPSP can complete the PAO authentication

and process the request.

ASPSP

PISP
PSU’s Bank

(ASPSP)

Sends a payment

request

Initiates the Credit

Transfer

Asks for PSU

authentication

Confirms the

request

Asks for a transfer

Get the payment

request status

<<Extends>>

<<Extends>>

<<Extends>>

<<Extends>>

<<Extends>>

Merchant
(Payment Requester)

Forwards the

payment request

status

<<Extends>>

Ordering Party
(Payment Account Owner)

Asks for a

cancellation

Sends a

cancellation

request

<<Extends>>

<<Extends>>

Cancels a

scheduled

transfer

<<Extends>>

<<Extends>>

USE CASE

(PISP)
DESCRIPTION INTERACTIONS

Gets the Payment

Request status

The user gets the status of the Payment Request from the ASPSP. This status

embeds:

- Information about the payment request and the execution of the

subsequent Credit Transfers

- Information about the effective booking of the payment

instructions that are about to be executed

- Information about the availability of funds for payment instructions

that are about to be executed but are not effectively booked

- Information about the trust given by the PSU to the beneficiary of

the payment

ASPSP

Forwards the Payment

Request status to the

Creditor (Non-API)

The user informs the PR of the status of the Payment Request PR (Creditor)

USE CASE

(ASPSP)
DESCRIPTION INTERACTIONS

Asks for PSU

authentication (Non-

API)

Provided the Payment Request is valid, the user asks the PAO in order to

authenticate before execution of the relevant Payment Request or Cancellation

Request

PSU(PAO)

Initiates the Credit

Transfer (Non-API)

Provided the PAO has authenticated and the PISP has confirmed the payment

request, the ASPSP initiates the relevant Credit Transfer.

Beneficiary’s ASPSP

(Creditor Agent)

Cancels a scheduled

transfer (Non-API)

Provided the PAO has authenticated and the relevant transfers have not yet

been executed, the ASPSP cancels the execution of the instructions that were

specified by the PISP

None

3. Prerequisites and technical details

3.1. Actors registration

PSD2 actors must be registered by a registration authority. The information that has been

collected must be accessible to other actors in order to provide trust and interoperability.

A non-registered actor cannot interact with another actor.

Each actor must be provided with at least one eIDAS certificate (QWAC), for TLS 1.2 purpose,

delivered by a registered Qualified Trust Service Provider (QTSP).

The European Commission list of QTSPs can be retrieved at the following URL:

https://webgate.ec.europa.eu/tl-browser/

3.2. Cross-Authentication and Data Encryption

The STET PSD2 API relies on TLS 1.2 protocol in order to get cross-authentication between

actors. Moreover, this protocol also ensures data confidentiality during their transport on the

network.

Whenever a TPP connects as a client to an ASPSP API service, it will check the ASPSP server

certificate (QWAC) and present its own eIDAS certificate (QWAC) respecting the

ETSI/TS119495 Technical Specification.

The Organisational Identification within the Subject Distinguished Name of the certificate should

actually be regarded as an Authorization Number that will respect the following format rules:

• "PSD" as 3-character legal person identity type reference;

• 2-character ISO 3166 [7] country code representing the NCA country;

• hyphen-minus "-" (0x2D (ASCII), U+002D (UTF-8)); and

• 2-8-character NCA identifier (A-Z uppercase only, no separator);

• hyphen-minus "-" (0x2D (ASCII), U+002D (UTF-8)); and

• PSP identifier (authorization number as specified by the NCA).

In case of authentication failure, on one side or the other, the connection must be closed.

No additional encrypting or authenticating feature is required.

https://webgate.ec.europa.eu/tl-browser/

3.3. Customer Authentication Approaches

Three different approaches can be used by a TPP to allow the PSU authentication by the

ASPSP. These approaches rely on a PSU identification that must be relevant to the ASPSP

(National identifier or Bank customer identifier).

These approaches are implemented in different ways, depending on the relevant use case:

- either during the authorisation process (cf. §3.4.2), mostly for AISP and CBPII use

cases,

- or during the consent confirmation process, for instance in case of a PISP submitting

a Payment Request (cf. § 3.4.2).

3.3.1. Redirect Approach

Through the Redirect approach, the PSU authentication process is fully processed by the

ASPSP.

In order to allow this, the TPP has to redirect the PSU to the ASPSP authentication service,

meaning the PSU will leave temporarily the TPP interface for authenticating towards the ASPSP

interface.

The TPP might have already captured a PSU identifier that can be handled by the ASPSP for

unambiguously recognizing the PSU. In this case this identifier might be forwarded through the

redirection, when the redirect protocol allows the forwarding of this identifier.

After finalisation of the authentication, the ASPSP redirects the PSU back to the TPP interface.

3.3.2. Decoupled approach

Through the Decoupled approach, the PSU authentication process is fully processed by the

ASPSP.

In order to allow this the TPP has to capture a PSU identifier that can be handled by the ASPSP

for unambiguously recognizing the PSU, and to forward this identifier to the ASPSP.

Based on this identifier, the ASPSP will trigger an authentication through a decoupled device or

application, meaning that the PSU will not leave the TPP interface during the authentication

process.

3.3.3. Embedded-1-Factor approach

Through this approach, the PSU authentication process involves the TPP that will forward one

authentication factor, this factors being a “Possession” factor, e.g.

o a One-Time Password sent by the ASPSP on a separate device or application

owned by the PSU

o a response to a challenge sent by the ASPSP on a separate device or

application owned by the PSU

3.3.4. Exemptions to Strong Customer Authentication

Exemptions to Strong Customer Authentication are specified by the EBA RTS on SCA,

especially for Payment Initiation Services.

In this context, the API allows the PISP to forward to the ASPSP any useful information.

Moreover, the PISP may also hint the ASPSP on whether or not the relevant payment request

could be subject to an exemption.

Eventually, the ASPSP keeps the final decision to apply or not this exemption.

3.4. Authorization

3.4.1. Levels of authorization

The following levels of authorization may be checked and combined in order to compute the

effective rights granted to the TPP:

AUTHORIZATION

LEVEL
DESCRIPTION

Authorization by TPP role
Once the TPP has been registered for a given role, it can call any of the PSD2 features provided

by an ASPSP through the STET PSD2 API for this role.

Authorization by TPP-ASPSP

agreement

The TPP can call any of the additional (non PSD2) features provided by an ASPSP through the

STET PSD2 API, provided there is a bilateral agreement to use these features.

Authorization by TPP-PSU

agreement

If the PSU has contracted with a TPP, he/she must

- Give a list of the ASPSPs that he/she allows the TPP to access

- Process an authentication against each of those relevant ASPSPs that will further

allow the TPP to access the PSU data.

Authorization by PSU context

The PSU is able to specify his/her PSU context detailing, for each of its relevant accounts:

- If this account will be accessible or not by the TPP

- Which features can be used by the TPP

The PSU can modify at any time his/her PSU context.

3.4.2. Technical basis

The TPP is authorized to access the ASPSP’s API through an access token that can be

retrieved through the OAUTH2 Authorisation Framework (https://tools.ietf.org/html/rfc6749).

Different authorisation grants can be used, depending on the TPP’s role and use case to be

applied.

The TPP may need to handle multiple OAUTH2 tokens provided by a given ASPSP on behalf of

a given PSU. Actually, the request of a new OAUTH2 token must not imply the revocation of a

previous one.

3.4.2.1. TPP Identity matching

The OAUTH2 protocol is enforced by checking the identity of the TPP during the OAUTH2

procedures through the TPP’s eIDAS certificate, based on MTLS

(https://datatracker.ietf.org/doc/rfc8705/).

This enforcement is obtained by the mandatory provisioning by the TPP of a [client_id] field

within all OAUTH2 request. This [client_id] must match, directly or not, with the Authorisation

Number located within the TPP’s eIDAS certificate and this match must be checked by the

ASPSP for each OAUTH2 request.

Direct matching

The match can be obviously direct when the [client_id] is equal to the Authorisation Number.

In this case the ASPSP’s API MANAGER might be able to check and accept “on the fly” the

OAUTH2 request.

Indirect matching

However, in some cases, especially when the API MANAGER is unable to process an “on the

fly” registration, an OAUTH2 technical setup should occur prior to any OAUTH2 token request.

This setup will result by the provisioning of a [client_id] value by the ASPSP to the TPP.

- The provisioning of multiple [client_id] values that could be used for different use

cases by the TPP is possible through replaying the setup.

- Moreover, the setup allows the exchange of operational data between the TPP and

the ASPSP for further use: logos, phone numbers, email addresses, certificates…

https://tools.ietf.org/html/rfc6749
https://datatracker.ietf.org/doc/rfc8705/

Eventually, this setup can be automated.

3.4.2.2. Automated OAUTH2 technical setup

Principles

While most of the API managers provide an inline setup interface, this setup can also be

automated.

The RFC 7591 specifies an interactive dynamic protocol that allows a client to provision some

context metadata and get a [client_id] value. As a complement, RFC 7592 specifies how to

retrieve, modify or delete a previously posted context.

If several usage contexts are needed for a given API client, this client will have to reiterate the

complete process to get as many [client_id] values as needed.

Actually, some TPPs might be client of an API on behalf of an agent (Article 4-38 of PSD2).

Each agent should be considered as a specific usage context.

As this protocol is not mandatory, each API implementation will have to specify whether or not it

is implemented.

Context metadata

The relevant metadata items to provide are listed below:

CLIENT METADATA NAME
CLIENT METADATA

DESCRIPTION
REQUIREMENT

CHANGE
CONTROLLER

REFERENCE

redirect_uris
Array of redirection
URIs for use in
redirect-based flows

Mandatory IESG [RFC7591]

software_statement

JSON Web Token
(JWT) that asserts
metadata values
about the client
software as a bundle

Optional IETF [RFC7591]

token_endpoint_auth_method

Requested
authentication
method for the token
endpoint.

Mandatory

According to the RFC8705 (cf. §
2.1.1), the value to be used will
be "tls_client_auth" as soon as
the draft will be promoted as an
RFC.

IESG
IETF

[RFC7591]
[RFC8705]

tls_client_auth_subject_dn

Indicates the
certificate subject
value
that the authorization
server is to expect
when authenticating
the
respective client.

Mandatory

An [RFC4514] string
representation of the expected
subject
distinguished name of the
certificate, which the OAuth
client will
use in mutual-TLS
authentication.

IETF [RFC8705]

https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7592
http://www.iana.org/go/rfc7591
https://tools.ietf.org/html/draft-ietf-oauth-mtls-13#section-2.1.1

CLIENT METADATA NAME
CLIENT METADATA

DESCRIPTION
REQUIREMENT

CHANGE
CONTROLLER

REFERENCE

grant_types
Array of OAuth 2.0
grant types that the
client may use

Mandatory

Allowed values are:

- "authorization_code"
- “password"
- "client_credentials"
- "refresh_token"

IESG [RFC7591]

response_types

Array of the OAuth
2.0 response types
that the client may
use

Optional

“code” is the sole allowed value

IESG [RFC7591]

client_name

Human-readable
name of the client to
be presented to the
user

Mandatory

Must specify the name of the
agent or by default the name of
the TPP.

IESG [RFC7591]

client_uri
URL of a web page
providing information
about the client

Optional IESG [RFC7591]

logo_uri
URL that references
a logo for the client

Optional IESG [RFC7591]

scope
Space-separated list
of OAuth 2.0 scope
values

Optional IESG [RFC7591]

contacts

Array of strings
representing ways to
contact people
responsible for this
client, typically email
addresses

Mandatory

At least one contact must be
provided.

IESG [RFC7591]

tos_uri

URL that points to a
human-readable
terms of service
document for the
client

Optional IESG [RFC7591]

policy_uri

URL that points to a
human-readable
policy document for
the client

Optional IESG [RFC7591]

provider_legal_id

Authorization number
of the TPP according
to ETSI specification
on eIDAS certificates
for PSD2

Mandatory
STET
(to be registered)

client_legal_id
Authorization number
of the agent see
below)

Mandatory in case of an agent
which is distinct from the TPP

STET
(to be registered)

logo
base64 encoded
value of the logo

Optional
STET
(to be registered)

jwks

Client's JSON Web
Key Set [RFC7517]
document value,
which contains the
client's public keys.

Optional

The value of this field MUST be
a JSON object containing a
valid JWK Set. These keys can
be used by higher-level
protocols that use signing or
encryption.

IESG [RFC7591]

In a similar way to the ETSI specification on the Authorization Number for TPPs, the agent

Authorization Number must respect the following format:

- "AGT" as 3-character legal person identity type reference;
- 2-character ISO 3166 country code representing the NCA country;

http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591
http://www.iana.org/go/rfc7591

- hyphen-minus "-" (0x2D (ASCII), U+002D (UTF-8)); and
- 2-8-character NCA identifier (A-Z uppercase only, no separator);
- hyphen-minus "-" (0x2D (ASCII), U+002D (UTF-8)); and
- Agent identifier (registration number as specified by the NCA).

Interactions

The TPP submits its context metadata through a

POST /register

In response, it gets this context metadata completed by

- the relevant [client_id]

- the [registration_client_uri] as an endpoint for configuration of the client

- the [registration_access_token] to be used for accessing the configuration of the

client.

- its issuing timestamp.

RFC7591 allows the server to update some of the context metadata if needed.

At any time, the TPP can retrieve the context metadata through a

GET /register/{client_id}

Updating the context metadata can be done through a

PUT /register/{client_id}

And deleting the context metadata is possible through a

DELETE /register/{client_id}

3.4.2.3. OAUTH2 Authorization Code Grant

The authorisation process might rely on an OAUTH2 sequence for obtaining an Authorization

Code Grant token (cf. https://tools.ietf.org/html/rfc6749#section-4.1) and implements the

REDIRECT approach.

This kind of token, depending on the ASPSP implementation:

- Can be used for all AISP use cases;

https://tools.ietf.org/html/rfc6749#section-4.1

- Can be used for the CBPII use case;

- Can be used for the PISP confirmation use case.

The process can be summarized through the following steps.

At first, the PSU must specify to the TPP, the identity of one of its ASPSPs.

Authorization Request

The TPP initiates the OAUTH2 sequence by redirecting the PSU to the relevant ASPSP’s

authorization infrastructure, through the following URL pattern and parameters

Since this is done by a redirection of the PSU, the eIDAS of the TPP cannot be presented at this

stage.

Notice: The RFC 6749 does not specify the Authorization Code Grant to support the forwarding

of the Resource Owner (PSU) user name or language preferences. However, some OpenID

Connect features might be used for these purposes even though the OpenID Connect

specification is not fully applied (cf. § 3.4.2.4).

GET /authorize?response_type=code&client_id={clientId}&redirect_uri={redirectUri}&scope={scope}[&state={state}]

NAME DATA
TYPE AND
CONSTRAINS

response_type [1..1] Expected type of token
String[10]
Must be valued with
“code”

NAME DATA
TYPE AND
CONSTRAINS

client_id [1..1] TPP identification

String[36] must be equal
or linked to the
OrganizationIdentifier
part of the Distinguished
Name of the eIDAS
certificate, according to
ETSI specification

redirect_uri [0..1] Call-back URL of the TPP String[140]

scope [0..1]

Specifies the generic accreditations that both the
PSU and the TPP agreed on:

- For AISP
o aisp
o extended_transaction_history

- for CBPII
o cbpii

- for PISP
o pisp

String[140]
Space delimited roles
list.
Mandatory

state [0..1]
Internal state that can be used by the TPP for
context management.

String[1024]
Recommended

The ASPSP

- Identifies and authenticates the PSU

- Computes the relevant TPP checks (roles, validity, non-revocation…)

- Checks the [redirect_uri] against the ones that might have been declared during the

automated OAUTH2 technical setup (cf. § 3.4.2.2). The provided [redirect_uri] must

exactly match one those that have been registered.

Authorization Response

Afterwards, the ASPSP redirects the PSU to the TPP, using the previously given call-back URL

(redirect_uri) and the following parameters:

NAME DATA
TYPE AND
CONSTRAINS

code [1..1]
Short-time code to use in order to get the
access token

String[36]

state [0..1] Internal state if provided by the TPP
String[1024]
Recommended

The recommended lifetime of the authorization code as specified by the RFC 6749 is 10

minutes but it is up to the authorization server to set its own lifetime value.

Access Token Request

In order to get the access token, the TPP is now able to call, through a POST request, the

ASPSP’s authorization infrastructure with the following parameters.

POST /token HTTP/1.1
 Host: server.example.com

 grant_type=authorization_code
 &code={code}
 &redirect_uri={redirectUrl}
 &client_id={clientId}

NAME DATA
TYPE AND
CONSTRAINS

grant_type [1..1] Requested authorization type
String[36]
Must be valued with
“authorization_code”

code [1..1]
Short-time code previously provided by the
ASPSP

String[36]

redirect_uri [0..1] Call-back URL of the TPP

String[140]
Must be equal to the one
provided during the
authorization code
request

client_id [1..1] TPP identification.

String[36] must be equal
or linked to the
OrganizationIdentifier part
of the Distinguished
Name of the eIDAS
certificate, according to
ETSI specification

- The ASPSP

o Identifies and authenticates the TPP through the presented eIDAS certificate

(QWAC)

o Checks the direct or indirect matching between the Authorization Number

within the eIDAS certificate and the [client_id] value.

o Computes the relevant TPP checks (roles, validity, non-revocation…)

Access Token Response

- The ASPSP answers through a HTTP200 (OK) response that embeds the following

data.

NAME DATA
TYPE AND
CONSTRAINS

access_token [1..1]
Access token provided by the ASPSP to the
TPP.

String[140]

token_type [1..1]
Type of the provided access token (“Bearer” or
“MAC”)

String[10]
Must be valued with
“Bearer”

expires_in [0..1]
Token lifetime, in seconds. The token can be
used several times as far as it is not expired.

Numeric

refresh_token [0..1]
Refresh token that can be used for a future
token renewal request.

String[140]

3.4.2.4. OpenID Connect extension to the OAUTH2 Authorization Code Grant

As an optional feature, an authorization server may implement the « OpenID Connect Core

1.0 » specification on top of the OAUTH2 “Authorization Code” flow.

The OpenID Connect protocol allows the API client (TPP) to get from the API server (ASPSP)

an IdToken that will certify the identity of the PSU, once this PSU has been authenticated by the

ASPSP.

Authentication request

The Open Id Connect Authentication Request relies on the OAUTH2 “Authorization Code”

Authorization Request with some additional parameters, marked as bold in the following

diagram)requirement.

s:

NAME DATA
TYPE AND
CONSTRAINS

response_type [1..1] Expected type of token
String[10]
Must be valued with
“code”

client_id [1..1] TPP identification

String[36] must be equal
or linked to the
OrganizationIdentifier
part of the Distinguished
Name of the eIDAS
certificate, according to
ETSI specification

redirect_uri [0..1] Call-back URL of the TPP String[140]

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

NAME DATA
TYPE AND
CONSTRAINS

scope [0..1]

Specifies the generic accreditations that both the
PSU and the TPP agreed on:

- For AISP
o aisp
o extended_transaction_history

- for CBPII
o cbpii.

- In any case
o openid
o offline_access

String[140]
Space delimited roles
list.

additional scopes are
required

- openid for
specifying the use
of OpenID
Connect

- offline_access to
allow the retrieval
of a refresh token
within the OpenID
context.

state [0..1]
Internal state that can be used by the TPP for
context management.

String[1024]

nonce [0..1]
Association of a client session with an Id
token used to mitigate replay attacks

String[36]

max-age [0..1] Maximum authentication age (in seconds) String[15]

ui_locales [1..1]
End-User's preferred languages and scripts
for the user interface.

String [140]
End-User's preferred
languages and scripts
for the user interface,
represented as a
space-separated list
[RFC 5646]
Required by the API

id_token_hint [0..1]
last known IdToken for the end-user (PSU), if
any.

String [2048]

login_hint [0..1]
Hint to the Authorization Server about the
login identifier the End-User might use to log
in (if necessary).

String[36]

The [id_token_hint] parameter is quite useful to ease a PSU authentication request renewal by

forwarding his/her already known identification. For a first authentication request the [login_hint]

parameter can be used by the TPP to forward the PSU identification, as known by the ASPSP.

As for the OpenID Connect Authentication Request is based on the OAUTH2 Authorization

Request, the latest is enhanced in the following way:

GET /authorize?
 response_type=code
 &client_id=s6BhdRkqt3
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
 &scope=openid%20%offline_access%20%aisp20aisp
 &nonce=n-0S6_WzA2Mj
 &state=af0ifjsldkj
HTTP/1.1
 Host: server.example.com

https://tools.ietf.org/html/rfc5646

Enhanced OAUTH2 Authorization Code Grant

Even though the OpenID Connect cannot be fully implemented, it may be worth using some of

its specific parameters in order to enrich an OAUTH2 authorization request if the server allows

it. The benefit of having the PSU identification, through the [login_hint] parameter, and language

preferences, through the [ui_locales] parameter, should be seen as a real advantage.

Authentication Response

Case of a successful processing of the request, the server will return an authorization code

through the redirection of the PSU towards the TPP.

HTTP/1.1 302 Found
 Location: https://client.example.org/cb?
 code=SplxlOBeZQQYbYS6WxSbIA
 &state=af0ifjsldkj

Token request

The TPP requests the exchange of the authorization code against an OAUTH2 token.

POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

NB: The « Authorization » header is useless since authentication is provided through MTLS,

based on the TPP eIDAS certificate (https://datatracker.ietf.org/doc/rfc8705/).

Token response

The Authorization server answers with:

- An OAUTH2 access token

- An OAUTH2 refresh token

- An IdToken

HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

https://client.example.org/cb
https://datatracker.ietf.org/doc/rfc8705/

 {
 "access_token": "SlAV32hkKG",
 "token_type": "Bearer",
 "refresh_token": "8xLOxBtZp8",
 "expires_in": 3600,
 "id_token": "eyJhbGciOiJSUzI1NiIsImtpZCI6IjFlOWdkazcifQ.ewogImlzc
 yI6ICJodHRwOi8vc2VydmVyLmV4YW1wbGUuY29tIiwKICJzdWIiOiAiMjQ4Mjg5
 NzYxMDAxIiwKICJhdWQiOiAiczZCaGRSa3F0MyIsCiAibm9uY2UiOiAibi0wUzZ
 fV3pBMk1qIiwKICJleHAiOiAxMzExMjgxOTcwLAogImlhdCI6IDEzMTEyODA5Nz
 AKfQ.ggW8hZ1EuVLuxNuuIJKX_V8a_OMXzR0EHR9R6jgdqrOOF4daGU96Sr_P6q
 Jp6IcmD3HP99Obi1PRs-cwh3LO-p146waJ8IhehcwL7F09JdijmBqkvPeB2T9CJ
 NqeGpe-gccMg4vfKjkM8FcGvnzZUN4_KSP0aAp1tOJ1zZwgjxqGByKHiOtX7Tpd
 QyHE5lcMiKPXfEIQILVq0pc_E2DzL7emopWoaoZTF_m0_N0YzFC6g6EJbOEoRoS
 K5hoDalrcvRYLSrQAZZKflyuVCyixEoV9GfNQC3_osjzw2PAithfubEEBLuVVk4
 XUVrWOLrLl0nx7RkKU8NXNHq-rvKMzqg"
 }

IdToken structure

The structure of the IdToken is a Json Web Token (JWT).

In the previous example, the following data is included:

{
 alg: "RS256",
 kid: "1e9gdk7"
}.
{
 iss: "http://server.example.com",
 sub: "248289761001",
 aud: "s6BhdRkqt3",
 nonce: "n-0S6_WzA2Mj",
 exp: 1311281970,
 iat: 1311280970
}.
[signature]

The possible data items are described in the following table:

http://server.example.com/

FIELD REQUIREMENT DESCRIPTION

iss Mandatory Token provider identifier

sub Mandatory Token subject identifier

aud Mandatory Token recipient [client_id]

nonce Conditional
Mandatory retrieval of the [nonce]
parameter if present in the initial
Authentication Request

exp Mandatory IdToken expiration date [RFC3339]

iat Mandatory IdToken creation date [RFC3339]

auth_time Conditional

End-user (PSU) authentication date and
time [RFC3339] when the [max_age]
parameter is present in the initial
Authentication Request

3.4.2.5. OAUTH2 Resource Owner Password Grant

The registration process relies on an OAUTH2 sequence for obtaining a Resource Owner

Password Grant token (cf. https://tools.ietf.org/html/rfc6749#section-4.3) and implements the

EMBEDDED approach.

This kind of token, depending on the ASPSP implementation:

- Can be used for all AISP use cases ;

- Can be used for the CBPII use case.

In order to enforce the flow and respect the two-factor authentication constraint, the “password”

to be used must not be a static password but the concatenation of:

- a possession factor obtained through an ad-hoc device provided to the PSU by the

ASPSP,

- and a knowledge factor (e.g. PIN)

However, it is important to notice that OAuth 2.0 Security Best Current Practice will likely

deprecate this flow in the near future.

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc6749#section-4.3

The process can be summarized through the following steps.

At first, the PSU must specify, to the TPP, the identity of one of his/her ASPSPs and provides

him with

o His/her identifier against the ASPSP services

o A “password” that is the result of a Strong Customer Authentication applied to

the PSU by the ASPSP.

Access Token Request

The TPP initiates the OAUTH2 sequence by sending the following request directly to the

ASPSP’s Authorisation Service.

POST /token HTTP/1.1
 Host: server.example.com

 grant_type=password
 &username={userName}
 &password={password}
 &client_id={clientId}
 &scope={scope}

NAME DATA
TYPE AND
CONSTRAINS

grant_type [1..1] type of requested grant
String[10]
Must be valued with
“password”

username [1..1] PSU identification String[36]

password [1..1] PSU “password”

String[20]
Result of the
concatenation of a
“knowledge factor” and
a “possession” factor

client_id [1..1] TPP identification

String[36] must be equal
or linked to the
OrganizationIdentifier
part of the Distinguished
Name of the eIDAS
certificate, according to
ETSI specification

scope [0..1]

Specifies the generic accreditations that both the
PSU and the TPP agreed on:

- For AISP
o aisp
o extended_transaction_history

- for CBPII
o cbpii

String[140]
Space delimited roles
list.

The ASPSP

- Identifies and authenticates the TPP through the presented eIDAS certificate (QWAC)

- Checks the direct or indirect matching between the Authorization Number within the

eIDAS certificate and the [client_id] value.

- Computes the relevant TPP checks (roles, validity, non-revocation…)

The ASPSP checks the identifier of the PSU and parse the “password” in order to retrieve and

checks the “Knowledge” factor and the “Possession” factor, thus processing the SCA.

Access Token Response

- In case of successful SCA, the ASPSP answers through a HTTP200 (OK) response

that embeds the following data.

NAME DATA
TYPE AND
CONSTRAINS

access_token [1..1]
Access token provided by the ASPSP to the
TPP.

String[140]

token_type [1..1]
Type of the provided access token (“Bearer” or
“MAC”)

String[10]
Must be valued with
“Bearer”

expires_in [0..1]
Token lifetime, in seconds. The token can be
used several times as far as it is not expired.

Numeric

refresh_token [0..1]
Refresh token that can be used for a future
token renewal request.

String[140]

3.4.2.6. OAUTH2 Client Credentials Flow

The registration of the TPP by the ASPSP relies on an OAUTH2 sequence for obtaining a Client

Credential grant token (cf. https://tools.ietf.org/html/rfc6749#section-4.4).

This kind of token, depending on the ASPSP implementation:

- Can be used for the CBPII use case ;

- Can be used for the PISP confirmation use case (basic REDIRECT Approach);

- Must be used for all others PISP use cases.

This procedure can be summarized through the following steps.

Access Token Request

The TPP sends directly, through a POST request, its access token request to the ASPSP

authorization infrastructure with the following URL pattern and parameters

POST /token

 Host: authorization-server.com

 grant_type=client_credentials

 &scope={scope}

 &client_id={clientId}

https://tools.ietf.org/html/rfc6749#section-4.4

NAME DATA
TYPE AND
CONSTRAINS

grant_type [1..1] Requested authorization type
String[36]
Must be valued with
“client_credentials”

scope [0..1]
Specifies the generic accreditations that both the
PSU and the TPP agreed on: PISP.

String[140]
Space delimited roles
list.
Default value is “pisp”

client_id [1..1] TPP identification

String[36] must be equal
or linked to the
OrganizationIdentifier
part of the Distinguished
Name of the eIDAS
certificate, according to
ETSI specification

The ASPSP

- Identifies and authenticates the TPP through the presented eIDAS certificate (QWAC)

- Checks the matching, direct or indirect, between the Authorization Number within the

eIDAS certificate and the [client_id] value.

- Computes the relevant TPP checks (roles, validity, non-revocation…)

Access Token Response

- The ASPSP answers through a HTTP200 (OK) response that embeds the following

data.

NAME DATA
TYPE AND
CONSTRAINS

access_token [1..1]
Access token provided by the ASPSP to the
TPP.

String[140]

token_type [1..1]
Type of the provided access token (“Bearer” or
“MAC”)

String[10]
Must be valued with
“Bearer”

expires_in [0..1]
Token lifetime, in seconds. The token can be
used several times as far as it is not expired.

Numeric

3.4.2.7. Use of the Access Token

The access token must be used within each request within the “Authorization” header, prefixed

by the token type “Bearer”.

The [client_id] that is linked to the access token must directly or indirectly match with the

Authorisation Number that is located within the TPP’s eIDAS certificate (QWAC).

If the access token is expired, the request will be rejected with HTTP401 with an error equal to

“invalid_token” and the request can be replayed once the access token has been refreshed.

If the access token scope cannot cover the request (case of extended transaction history

request for instance):

- The request will be rejected with HTTP403 with an error equal to “insufficient_scope”

- The refresh token will be revoked so the request could be replayed once a new token,

having the right scope, would have been requested and provided.

3.4.2.8. Refreshing the Access Token

Refreshing the access token is only possible when the access token was granted through an

OAUTH2 “Autorization Code”, OpenID Connect or “Resource Owner Password” Grants.

According to the RFC 6749 (cf. https://tools.ietf.org/html/rfc6749#section-6), the Refresh Token

can be used by the TPP in order to get a refreshed Access Token by the following request.

POST /token HTTP/1.1
 Host: server.example.com

 grant_type=refresh_token
 &client_id={clientId}
 &refresh_token=tGzv3JOkF0XG5Qx2TlKWIA
 &scope={scope}

NAME DATA
TYPE AND
CONSTRAINS

grant_type [1..1]
Must be valued with
“refresh_token”

refresh_token [1..1] Value of the provided refresh token

client_id [1..1] TPP identification

String[36] must be equal
or linked to the
OrganizationIdentifier
part of the Distinguished
Name of the eIDAS
certificate, according to
ETSI specification

scope [0..1]

Specifies the generic accreditations that both the
PSU and the TPP agreed on: “aisp” or “cbpii”.
“extended_transaction_history” is not allowed in
this case.

String[140]
Space delimited roles
list.

- The ASPSP

o Identifies and authenticates the TPP through the presented eIDAS certificate

(QWAC)

o Checks the direct or indirect matching between the Authorization Number

within the eIDAS certificate and the [client_id] value.

- The ASPSP answers through a HTTP200 (OK) response that embeds the following

data.

NAME DATA
TYPE AND
CONSTRAINS

access_token [1..1]
Access token provided by the ASPSP to the
TPP.

String[140]

https://tools.ietf.org/html/rfc6749#section-6

NAME DATA
TYPE AND
CONSTRAINS

token_type [1..1]
Type of the provided access token (“Bearer” or
“MAC”)

String[10]
Must be valued with
“Bearer”

expires_in [0..1]
Token lifetime, in seconds. The token can be
used several times as far as it is not expired.

Numeric

refresh_token [0..1]
Refresh token that can be replace the previous
refresh token.

String[140]

If the refresh token has been revoked, the request will be rejected with HTTP400 and an error

equal to “invalid grant”.

3.4.2.9. Refresh Token Revocation

The refresh token provided to an AISP is de facto revoked by the ASPSP

- After timeout of the by-law specified delay between two SCAs.

- After timeout of the ASPSP specified delay based on internal rules if any.

- After reject of a request for insufficient scope in order to allow the AISP to request

another token with the desired scope.

- On request of a PSU wanting to revoke the TPP access on his/her account data.

The TPP is also able to ask for the revocation of the refresh token, according to RFC 7009 (cf.

https://tools.ietf.org/html/rfc7009) through the following request.

POST /revoke HTTP/1.1
 Host: server.example.com

 token=45ghiukldjahdnhzdauz
 &token_type_hint=refresh_token
 &client_id={clientId}

NAME DATA
TYPE AND
CONSTRAINS

token [1..1] Token to be revoked by the ASPSP. String[140]

token_type_hint [0..1]
Information about the type of token to be
revoked

Must be valued with
“refresh_token”

client_id [1..1] TPP identification

String[36] must be equal
or linked to the
OrganizationIdentifier
part of the Distinguished
Name of the eIDAS
certificate, according to
ETSI specification

- The ASPSP

o Identifies and authenticates the TPP through the presented eIDAS certificate

(QWAC)

https://tools.ietf.org/html/rfc7009

o Checks the direct or indirect matching of the [client_id] value with the

Authorisation Number that is located within the TPP’s eIDAS certificate

(QWAC).

o Revokes the refresh token

3.4.2.10. Oauth2 for native apps

The RFC 8252 (https://tools.ietf.org/html/rfc8252) extends the use of the OAuth Authorization

request to applications that are installed on a given device (e.g. a smartphone).

Based on this RFC, one might consider having a straight through authorization process by using

- Universal Link (IOS based devices)

- App Link (Android based devices)

However, the API specification does not mandate this mechanism.

3.4.3. AISP authorization levels

Since a TPP is acting on behalf of a PSU being a PAO, the PSD2 use cases that are linked with

AISP role require the following authorization levels:

- Authorization by Role

- Authorization by TPP-PSU agreement

- Authorization by PSU context

TPP’s server ASPSP’s authorization server

2) The TPP app retrieves the URI from
the ASPSP’s OAUTH2 server and builds
the authorization request with
- the appropriate client_id
- the requested scope
- its callback URI

6) The TPP server retrieves the
authorization code.

7) The TPP server exchanges the authorization
code for an access token and a possible refresh

token.

1) The user is using the TPP app on his/her device.
He/she wants to give access to his/her data and
indicates his/her bank within the TPP app.

3) The TPP app issues the authorization
request, which opens the ASPSP app.

5) The ASPSP app issues the authorization
response which triggers the return to the TPP
app.

4) the ASPSP authenticates the
user and constructs the
authorization response with
- the authorization code

Prerequisites:
The ASPSP app has registered on the device
the URI of the OAUTH2 server as an
[Universal Link]/[App Link].
The TPP app has registered on the same
device the callback URI as an [Universal
Link]/[App Link].

https://tools.ietf.org/html/rfc8252

3.4.3.1. List of the relevant ASPSPs

When contracting with a TPP, the PSU will provide a list of the ASPSPs that it allows the TPP to

access. This list may not be exhaustive and so may not include some of the PSU’s ASPSPs.

3.4.3.2. Registration of the TPP-PSU agreement by each ASPSP

This registration is due to enable the further access of the TPP to the PSU’s data that is hosted

by a given ASPSP by providing the TPP with an OAUTH2 access token.

The access token can be retrieved by one of the following Grants:

- OAUTH2 Authorization Code grant (REDIRECT approach)

o This grant can be enhanced with the following additional parameters borrowed

from OpenID Connect:

▪ [login_hint]

▪ [ui_locales]

- OpenID Connect Grant (REDIRECT approach)

- OAUTH2 Resource Owner Password (EMBEDDED approach)

Each ASPSP will have to document its own choice on this topic.

3.4.3.3. AISP OAUTH2 Scopes

It is requested that AISP, CBPII or PISP roles will not be mixed within a single scope definition

OAUTH2 access token request.

The OAUTH2 scope requested by an AISP can be one of the following values:

- “aisp”

- “aisp extended_transaction_history”

The first scope value allows the AISP accessing all accessible accounts and data allowed by

the PSU until expiration of the by-law specified delay between two SCAs. However, the value

does not allow requesting an extended transaction history, i.e. history including transactions

older than 90 days.

The second scope value allows the AISP accessing all accessible accounts and data allowed

by the PSU until expiration of the by-law specified delay between two SCAs. It also allows

requesting an extended transaction history.

However, this “aisp extended_transaction_history” scope will be restricted to “aisp” by the

ASPSP during the first token refresh. Thus:

- The AISP will be able to ask for an extended transaction history with the very first

access token retrieved after a token request. So, in this case a single SCA will be

required and used to get the token and to ask for an extended transaction history.

- Any further extended transaction history request will be considered as out of scope

(cf. §3.4.2)

3.4.3.4. PSU detailed consent

The PSU detailed consent will specify which account or functionality will be accessible to the

AISP. It can be seen as a collection of individual accreditations.

Accreditations

AccreditationAccountInformationServiceProvider

accreditee

ThirdPartyProviderIdentifier

ThirdPartyProvider

PsuId

PaymentServiceUser

accreditor

Bic

AccountServicingPaymentServiceProvider

IBAN
Currency
Name
CashAccountType

CustomerBankAccount

owns holds

ResourceId

BankAccountResource
isLinked

appliesOn

AccountOperations

allows

AccountAccreditationTrustedBeneficiariesListAccess

Balances
Transactions
AmountCoverage
…

AccountOperationEnumeration

This collection is specific to a given PSU, a given TPP and a given ASPSP.

Each single accreditation relies on a specific account that is owned by the PSU and is held by

the ASPSP. It specifies which pieces of data (transactions, balances) the TPP is allowed to

carry out on this account.

The PSU manages this context with the AISP which is responsible of:

‒ The capture of the PSU choices:

• The PSU specifies to the AISP which account and feature should be

accessed or not.

• The execution of the PSU choices:

• The AISP has the responsibility to respect the PSU choices and not to

access any feature that it has not been granted for.

At any time, the PSU can edit his/her consent choices but this can only be done with the AISP.

Furthermore, the PSU consent may or may not be forwarded by the AISP to the ASPSP,

according to one of the two following consent management models.

Full-AISP model (A1)

In this model, the ASPSP does not require to be informed of the details of the PSU consent.

Whatever the AISP request, the ASPSP will respond, being unable to check the compliance of

the request against the PSU choices.

Actually, when getting the PSU context from the ASPSP (through the call [get /accounts]), the

AISP will get all relevant HAL links for each eligible account. These HAL links will help the AISP

to request the needed features on those accounts: balances and/or transactions.

Mixed model (A2)

In this model, the ASPSP does require to be informed of the details of the PSU consent.

Therefore, the ASPSP has implemented an ad-hoc API entry-point that can be called by the

AISP in order to forward the PSU choices.

Model choice

It is the charge of the ASPSP to implement or not the mixed model (A2). However, if this model

has been implemented by the ASPSP, it is the charge of the AISP to forward the details of the

PSU consent to the ASPSP whenever the PSU gives or edits this consent.

Once the details of the PSU consent has been received and saved by the ASPSP, the AISP,

when getting the PSU context from the ASPSP (through the call [get /accounts]), will only get

HAL links for authorized accounts and features.

3.4.4. CBPII authorization levels

Since a CBPII is acting on behalf of a PSU being a PAO, the PSD2 use cases that are linked

with AISP and CBPII roles require the following authorization levels:

- Authorization by Role

- Authorization by TPP-PSU agreement

- Authorization by PSU context

However, in some cases, the CBPII might have been previously enrolled by the PSU to the

relevant ASPSP (cf. §3.4.4.3).

3.4.4.1. List of the relevant ASPSPs

When contracting with a TPP, the PSU will provide a list of the ASPSPs that it allows the TPP to

access. This list may not be exhaustive and so may not include some of the PSU’s ASPSPs.

3.4.4.2. Registration of the TPP-PSU agreement by each ASPSP

This registration is due to enable the further access of the TPP to the PSU’s data that is hosted

by a given ASPSP by providing the TPP with an OAUTH2 access token.

The access token can be retrieved:

- Either through an OAUTH2 Authorization Code flow (REDIRECT approach)

- Or an OAUTH2 Resource Owner Password (EMBEDDED approach)

3.4.4.3. Pre-enrolled CBPII authorization level

When the PSU has previously enrolled the CBPII to his/her relevant ASPSP, the latest may

prefer to apply a simpler authorization scheme.

The access token can then be retrieved through an OAUTH2 Client Credentials flow, aiming

that PSU authentication is useless since the PSU consent was already captured.

3.4.4.4. CBPII scope

It is requested that AISP and CBPII roles will not be mixed within a single scope definition

OAUTH2 access token request.

The OAUTH2 scope requested by a CBPII can only be “cbpii”.

3.4.5. PISP authorization levels and Fraud Management

3.4.5.1. Posting and getting a Payment/Transfer Request

For posting or getting a Payment Request on behalf of a Merchant, or a Transfer Request on

behalf of an Ordering Party, the PISP can use an access token that can be retrieved from the

ASPSP through an OAUTH2 Client Credentials flow.

3.4.5.2. Cancellation of a Payment Request

In case the PISP has to cancel a payment request, the Access token to be used can be

retrieved from the ASPSP through an OAUTH2 Client Credentials flow as well.

However, the ASPSP may require an authentication of the PSU that can be performed through

REDIRECT (simple, cf. infra), DECOUPLED or EMBEDDED-1-FACTOR approaches.

In this perspective, the PISP will

- suggest the authentication approaches it supports

- and provide the call-back URLs to use for the REDIRECT approach.

o At least one call-back URL must be provided

o A second one may be provided that will be used in case of exception during

the process.

The ASPSP will then answer

- either with the decision of not processing the PSU authentication,

- or with the chosen authentication approach completed with the redirection URL to use

in case of REDIRECT approach.

3.4.5.3. Confirmation of a Payment Request

For confirmation of a Payment Request, the law requires the PSU to be authenticated by the

ASPSP.

This authentication shall be strong, unless exemption cases and can be performed through

REDIRECT (OAuth2 enforced, cf. infra), DECOUPLED or EMBEDDED-1-FACTOR

approaches.

The PISP will suggest the authentication approaches it supports. The ASPSP will then answer

with the chosen authentication approach completed with the redirection URL to use in case of

REDIRECT approach.

Once the PSU has confirmed the Payment Request through authentication, the PISP must itself

confirm the payment-request after having checked, for instance, the absence of potential

security flaw.

The posting of the PISP confirmation needs an access token as well.

- For DECOUPLED or EMBEDDED-1-FACTOR approaches, this access token might

be the one that was previously retrieved through the Client Credentials flow and used

for posting the payment request.

- For REDIRECT approach, the use of another access token, provided through an

OAUTH2 Authorization Code flow that will embed the PSU authentication is

mandatory.

3.4.5.4. Simple REDIRECT Approach

This approach can only be used for a Payment Request cancellation.

The PSU authentication is then processed through a simple redirection of the PSU to the

ASPSP authentication server by using the URL that was initially provided by the ASPSP.

The ASPSP authenticates the PSU and then redirects the latest by using one of the call-back

URLs that were provided by the PISP.

3.4.5.5. OAUTH2 Enforced REDIRECT Approach

This approach is mandatory for a Payment Request confirmation in REDIRECT approach.

An Authorization Code token will be used for the confirmation. The PSU authentication is

processed through the Authorization Code flow with the ASPSP authentication server.

Purpose and risk analysis

The payment initiation may indeed face some security issues in REDIRECT approach.

A first attack (session fixation) might happen, based on the fact that a given PSU will forward

the redirection request to another PSU who can be in a situation to authenticate and pay the

purchase made by the first PSU.

Moreover, even if the first attack is mitigated, the attacker might also try to simulate the

redirection (fake redirect) to the TPP in order to induce the confirmation of the payment request

to the ASPSP.

Session fixation protection

In order to avoid the session fixation attack, the PISP must ensure there is no “PSU-switch”

during redirection. This can be done by managing a nonce that

- will be stored in the PSU user agent session before the redirection to the ASPSP and

- will be retrieved from the PSU user agent after the redirection.

In case the retrieval failed, the chances are good there was such an attack. The PISP should

then cancel the payment request for fraud reason.

Otherwise, in case of successful nonce retrieval, the PISP can confirm the payment request to

the ASPSP who is then able to trigger the relevant Credit Transfers.

Fake redirect protection

In order to post the confirmation, the PISP has to request an Authorization Code token from the

ASPSP.

In response to the payment request, The ASPSP has provided the PISP with the URI of the

Authorisation server. Some OAuth2 parameters must have been pre-valued:

- [response_type] valued with “code”

- [scope] valued with “pisp”

- [context] valued with a hint to the payment-request

The PISP will complete this URL with its own OAuth2 parameters

- [client_id]

- [state] if needed

- [redirect_uri] as call-back URL.

The OAuth2 Authorization Code grant can then complete (cf. §3.4.2.3).

After the retrieval of the Authorization Code through the redirection of the PSU back to the

PISP, the latest must then ensure, by the nonce check mechanism, there was no “PSU-switch”

during the redirection, as previously explained.

The PISP can then exchange the Authorization Code against the Access token.

- the lifetime of the access token is specified by the Authorization Server in order to

limit the usability period.

- no refresh token has to be provided.

The confirmation is then posted, using this Access token.

In case of face redirect attack, the Access token could not have been retrieved by the PISP.

Even in confirmation attempt, the ASPSP can detect the absence of the token and will then

reject the payment request for FRAUD reason.

Otherwise, the confirmation sent by the PISP will lead to the normal triggering of the relevant

Credit Transfers.

3.4.5.6. OAUTH2 DECOUPLED Approach

In this approach, the Client Credential token can be used for all PISP use cases:

- Posting a payment request

- Getting the previously posted payment-request

- Modifying for cancellation the payment request

- Confirming the payment request

The PSU authentication is processed through a decoupled channel initiated by the ASPSP.

After PSU authentication, the PISP is informed by a direct call by the ASPSP. The PISP can

then confirm the payment request that will lead to the normal triggering of the relevant Credit

Transfers.

3.4.5.7. OAUTH2 EMBEDDED-1-FACTOR Approach

In this approach, the Client Credential token can be used for all PISP use cases:

- Posting a payment request

- Getting the previously posted payment-request

- Modifying for cancellation the payment request

- Confirming the payment request

The PSU authentication is triggered through the sending of a One-Time-Password (OTP) or a

challenge by the ASPSP to the PSU via a dedicated channel.

The PSU forwards the OTP or the response to the challenge to the PISP. The later can then

include this piece of data within the confirmation to be addressed to the ASPSP who is then

able to trigger the relevant Credit Transfers.

3.4.5.8. Recapitulative Table

 ENFORCED REDIRECT DECOUPLED
EMBEDDED-

1-FACTOR

Nonce mechanism

protection applied by PISP

The nonce must be computed by the PISP and stored within the PSU user-

agent as far as the PISP accepts Simple REDIRECT or Enforced REDIRECT

approaches when posting or cancelling a payment request.

Successful and

Unsuccessful Report Uri

provided by PISP

To be used by the ASPSP through

PSU redirection

To be used

directly by the

ASPSP

Useless

Accepted Authentication

Approach set by PISP
Must include “REDIRECT”

Must include

“DECOUPLED”

Must include

“EMBEDDED-1-

FACTOR”

Applied Authentication

Approach set by ASPSP
“REDIRECT” “DECOUPLED”

“EMBEDDED-1-

FACTOR”

Use of OAUTH2 Client

Credentials token
In any case except for confirmation In any case

Use of OAUTH2

Authorization Code token
Mandatory for confirmation Not used

consentApproval

set by ASPSP

Set with the ASPSP authorization

server
Not used

Challenge set by ASPSP Not used

psuAuthenticationFactor

set by PISP
Not used

Valued with the

OTP or response

to a challenge

3.5. Applicative authentication

Each request sent by the TPP has to be signed using http-signature mechanism which is

specified by the following IETF draft-paper:

• https://datatracker.ietf.org/doc/draft-cavage-http-signatures/

ASPSP might also apply http-signature to their responses.

3.5.1. Signature computation

The way it should be implemented is the following

- Computing a SHA256 digest of the HTTP body and adding this digest as an extra

HTTP header.

- Using a specific Qualified Certificate (QSealC), respecting the ETSI/TS119495

Technical Specification, in order to apply an RSA-SHA256 signature on

o all the following headers that are present within the HTTP request sent by the

TPP, including the previously computed digest

▪ Date (if available)

▪ Content-Type (when there is a payload)

▪ Content-Length (when there is a payload)

▪ X-Request-Id

▪ All available "PSU"-prefixed Headers (cf. § 3.6)

▪ the specific “(request-target)” pseudo-header which is specified by the

IETF draft-paper

o all the following headers that are present within the HTTP response given by

the ASPSP, including the previously computed digest

▪ Date (if available)

▪ Content-Type (when there is a payload)

▪ Content-Length (if available)

▪ X-Request-Id

- Adding this signature within an extra HTTP header embedding

o The key identifier which must specify the way to get the relevant qualified

certificate (see below)

o The algorithm that has been used

o The list of headers that have been signed

o The signature itself.

Since version #11 of the draft, two new pseudo-headers have been introduced in order to

strengthen the signature: (created) and (expires). However, work is still going on this subject

and the use of these two fields is not yet recommended.

https://datatracker.ietf.org/doc/draft-cavage-http-signatures/

3.5.2. Value of key identifier

It is requested that this identifier is valued with:

- Either the keyId that has been assigned by the authorization server during the
OAUTH2 technical setup (cf. § 3.4.2.2).

- Either a URL aiming to provide the relevant Qualified Certificate.
o In order to assure an easy discrimination of the certificate among others, it is

requested that the last part of the URL to the certificate be suffixed by an
underscore followed by the SHA-256 fingerprint of the certificate.

▪ E.g.:
https://path.to/myQsealCertificate_714f8154ec259ac40b8a9786c9908
488b2582b68b17e865fede4636d726b709f

o This URL could have been provided during the OAUTH2 technical setup
within the “5xu” field of the JKS provided by the TPP (cf. RFC7517).

3.5.3. Exception handling

If the ASPSP notes that the signature is either absent or invalid, it shall reject the request with

HTTP400.

EXTRA HTTP HEADER DATA COMMENT
Digest Digest of the body

Signature
http-signature of the request (cf.
https://datatracker.ietf.org/doc/draft-cavage-
http-signatures/)

The keyId must specify the way
to get the relevant qualified
certificate.
It is requested that this identifier
is an http or https URL aiming
to provide the relevant
Qualified Certificate.
The certificate format must be
PEM

3.6. Fraud-detection-oriented information

The following extra HTTP-headers must be used within the HTTP request sent by the TPP,

provided the relevant pieces of data are available within the connection between the PSU and

the TPP. This forwarding allows the ASPSP to integrate this information into its own fraud

detection process.

Moreover, these headers can be considered as proof of the PSU being connected.

https://datatracker.ietf.org/doc/draft-cavage-http-signatures/
https://datatracker.ietf.org/doc/draft-cavage-http-signatures/

EXTRA HTTP HEADER DATA COMMENT

PSU-IP-Address
IP Address of the PSU terminal when
connecting to the TPP

In regards with GDPR rules,
this must be subject to PSU’s
consent

PSU-IP-Port
IP Port of the PSU terminal when connecting
to the TPP

PSU-HTTP-Method
HTTP Method used for the most relevant
PSU’s terminal request to the TTP

PSU-Date
Timestamp of the most relevant PSU’s
terminal request to the TTP

PSU-User-Agent
“User-Agent” header field sent by the PSU
terminal when connecting to the TPP

PSU-Referer
“Referer” header field sent by the PSU
terminal when connecting to the TPP

PSU-Accept
“Accept” header field sent by the PSU
terminal when connecting to the TPP

PSU-Accept-Charset
“Accept-Charset” header field sent by the
PSU terminal when connecting to the TPP

PSU-Accept-Encoding
“Accept-Encoding” header field sent by the
PSU terminal when connecting to the TPP

PSU-Accept-Language
“Accept-Language” header field sent by the
PSU terminal when connecting to the TPP

PSU-GEO-Location
The forwarded Geo Location of the
corresponding HTTP request between PSU
and TPP if available.

In regards with GDPR rules,
this must be subject to PSU’s
consent

PSU-Device-ID

UUID (Universally Unique Identifier) for a
device, which is used by the PSU, if
available.
UUID identifies either a device or a device
dependant application installation.
In case of installation identification this ID
need to be unaltered until removal from
device.

In regards with GDPR rules,
this must be subject to PSU’s
consent

3.7. Other specific HTTP headers to be used

EXTRA HTTP HEADER DATA COMMENT

X-Request-ID
Correlation header to be set in a request and
retrieved in the relevant response.

3.8. Specific HTTP return codes and messages to be used

MESSAGE
HTTP
CODE

SIGNIFIANCE

FORMAT_ERROR 400
Format of certain request fields are not matching the XS2A requirements. An explicit
path to the corresponding field might be added in the return message.

RESOURCE_UNKNOWN 404 If resourceId in path

PERIOD_INVALID 400 Requested time period out of bound.

ACCESS_EXCEEDED 429 The access on the account has been exceeding the consented multiplicity per day.

REQUESTED_FORMATS
_INVALID

406
The requested formats in the Accept header entry are not matching the formats
offered by the ASPSP.

3.9. STET PSD2 API technical summary

TOPIC CHOICE COMMENT

Access network Internet

Network protocol HTTP 1.1 (Minimum)

Data encryption

Cross-authentication
TLS 1.2 Could be enforced through STS and/or PFS

Authorization protocol OAUTH2

In respect of RFC 6749, 7009

One of the following token modes

- Authorization Code Grant (AISP, CBPII)

- Resource Owner Password (AISP, CBPII)

- Client credential (PISP, CBPII)

Based on MTLS, the identity of the TPP is provided by its eIDAS

certificate during OAUTH2 procedures.

https://datatracker.ietf.org/doc/rfc8705/

Applicative protocol REST
In respect of the Richardson Maturity Model, on level three in order

to provide HYPERMEDIA links.

Applicative authentication http-signature

Notice this is actually an IETF draft, waiting for approval and so

subject to some modifications.

https://datatracker.ietf.org/doc/draft-cavage-http-signatures/

PSU Strong Customer

Authentication approaches

REDIRECT, DECOUPLED,

EMBEDDED-1-FACTOR

Data format JSON/UTF8 With use of ISO20022 based data structures

Technical documentation SWAGGER 2.0

Date/Time format must respect ISO8601 and RFC3339 in

accordance with OpenApi specifications.

The creator of a Date/Time shall choose

- Any time-zone format although UTC format is

recommended.

- Any second fraction format, including no second

fraction.

A simple date can be specified as an UTC date/time with a time

part equal to “00:00:00Z”.

The recipient of a Date/Time must be able to interpret its value as

far as it is compliant with ISO8601 and RFC3339.

https://datatracker.ietf.org/doc/draft-ietf-oauth-mtls/
https://datatracker.ietf.org/doc/rfc8705/
https://datatracker.ietf.org/doc/draft-cavage-http-signatures/

